Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
An Effective Anti-Aliasing Approach for Residual Networks

Nov 20, 2020
Cristina Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Nicolas Le Roux, Ross Goroshin

  Access Paper or Ask Questions

Learned Equivariant Rendering without Transformation Supervision

Nov 11, 2020
Cinjon Resnick, Or Litany, Hugo Larochelle, Joan Bruna, Kyunghyun Cho

* Workshop on Differentiable Vision, Graphics, and Physics in Machine Learning at NeurIPS 2020 

  Access Paper or Ask Questions

Learning to Execute Programs with Instruction Pointer Attention Graph Neural Networks

Oct 23, 2020
David Bieber, Charles Sutton, Hugo Larochelle, Daniel Tarlow

* Accepted at NeurIPS 2020 

  Access Paper or Ask Questions

Revisiting Fundamentals of Experience Replay

Jul 13, 2020
William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark Rowland, Will Dabney

* Published at ICML 2020. First two authors contributed equally and code available at 

  Access Paper or Ask Questions

Learning Graph Structure With A Finite-State Automaton Layer

Jul 09, 2020
Daniel D. Johnson, Hugo Larochelle, Daniel Tarlow

* Submitted to NeurIPS 2020 

  Access Paper or Ask Questions

A Universal Representation Transformer Layer for Few-Shot Image Classification

Jun 25, 2020
Lu Liu, William Hamilton, Guodong Long, Jing Jiang, Hugo Larochelle

  Access Paper or Ask Questions

Improving Reproducibility in Machine Learning Research (A Report from the NeurIPS 2019 Reproducibility Program)

Apr 02, 2020
Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina Beygelzimer, Florence d'Alché-Buc, Emily Fox, Hugo Larochelle

  Access Paper or Ask Questions

On-the-Fly Adaptation of Source Code Models using Meta-Learning

Mar 26, 2020
Disha Shrivastava, Hugo Larochelle, Daniel Tarlow

  Access Paper or Ask Questions

Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent Sampling

Mar 24, 2020
Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo Larochelle, Liam Paull, Yuan Cao, Yoshua Bengio

  Access Paper or Ask Questions

DIBS: Diversity inducing Information Bottleneck in Model Ensembles

Mar 10, 2020
Samarth Sinha, Homanga Bharadhwaj, Anirudh Goyal, Hugo Larochelle, Animesh Garg, Florian Shkurti

* Samarth Sinha* and Homanga Bharadhwaj* contributed equally to this work. Code will be released at 

  Access Paper or Ask Questions

Curriculum By Texture

Mar 03, 2020
Samarth Sinha, Animesh Garg, Hugo Larochelle

  Access Paper or Ask Questions

On Catastrophic Interference in Atari 2600 Games

Feb 28, 2020
William Fedus, Dibya Ghosh, John D. Martin, Marc G. Bellemare, Yoshua Bengio, Hugo Larochelle

* First two authors contributed equally. Code available to reproduce experiments at 

  Access Paper or Ask Questions

Algorithmic Improvements for Deep Reinforcement Learning applied to Interactive Fiction

Nov 28, 2019
Vishal Jain, William Fedus, Hugo Larochelle, Doina Precup, Marc G. Bellemare

* To appear in Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20). Accepted for Oral presentation 

  Access Paper or Ask Questions

Small-GAN: Speeding Up GAN Training Using Core-sets

Oct 29, 2019
Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle, Augustus Odena

  Access Paper or Ask Questions

Learning Neural Causal Models from Unknown Interventions

Oct 02, 2019
Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Chris Pal, Yoshua Bengio

  Access Paper or Ask Questions

InfoBot: Transfer and Exploration via the Information Bottleneck

Apr 04, 2019
Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Matthew Botvinick, Hugo Larochelle, Yoshua Bengio, Sergey Levine

* Accepted at ICLR'19 

  Access Paper or Ask Questions

A RAD approach to deep mixture models

Mar 18, 2019
Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, Hugo Larochelle

* 9 pages of main content, 4 pages of appendices 

  Access Paper or Ask Questions

Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples

Mar 07, 2019
Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle

  Access Paper or Ask Questions

Hyperbolic Discounting and Learning over Multiple Horizons

Feb 28, 2019
William Fedus, Carles Gelada, Yoshua Bengio, Marc G. Bellemare, Hugo Larochelle

  Access Paper or Ask Questions

Centroid Networks for Few-Shot Clustering and Unsupervised Few-Shot Classification

Feb 22, 2019
Gabriel Huang, Hugo Larochelle, Simon Lacoste-Julien

  Access Paper or Ask Questions

The Hanabi Challenge: A New Frontier for AI Research

Feb 01, 2019
Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, Michael Bowling

* 37 pages, 5 figures, submitted to Artificial Intelligence 

  Access Paper or Ask Questions

Blindfold Baselines for Embodied QA

Nov 12, 2018
Ankesh Anand, Eugene Belilovsky, Kyle Kastner, Hugo Larochelle, Aaron Courville

* NIPS 2018 Visually-Grounded Interaction and Language (ViGilL) Workshop 

  Access Paper or Ask Questions

Language GANs Falling Short

Nov 08, 2018
Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, Laurent Charlin

  Access Paper or Ask Questions

Recall Traces: Backtracking Models for Efficient Reinforcement Learning

Apr 02, 2018
Anirudh Goyal, Philemon Brakel, William Fedus, Timothy Lillicrap, Sergey Levine, Hugo Larochelle, Yoshua Bengio

* In Review at ICML 2018 

  Access Paper or Ask Questions