Abstract:The copilot framework, which aims to enhance and tailor large language models (LLMs) for specific complex tasks without requiring fine-tuning, is gaining increasing attention from the community. In this paper, we introduce the construction of a Healthcare Copilot designed for medical consultation. The proposed Healthcare Copilot comprises three main components: 1) the Dialogue component, responsible for effective and safe patient interactions; 2) the Memory component, storing both current conversation data and historical patient information; and 3) the Processing component, summarizing the entire dialogue and generating reports. To evaluate the proposed Healthcare Copilot, we implement an auto-evaluation scheme using ChatGPT for two roles: as a virtual patient engaging in dialogue with the copilot, and as an evaluator to assess the quality of the dialogue. Extensive results demonstrate that the proposed Healthcare Copilot significantly enhances the capabilities of general LLMs for medical consultations in terms of inquiry capability, conversational fluency, response accuracy, and safety. Furthermore, we conduct ablation studies to highlight the contribution of each individual module in the Healthcare Copilot. Code will be made publicly available on GitHub.
Abstract:Significant progress has been made recently in point cloud segmentation utilizing an encoder-decoder framework, which initially encodes point clouds into low-resolution representations and subsequently decodes high-resolution predictions. Inspired by the success of high-resolution architectures in image dense prediction, which always maintains a high-resolution representation throughout the entire learning process, we consider it also highly important for 3D dense point cloud analysis. Therefore, in this paper, we explore high-resolution architectures for 3D point cloud segmentation. Specifically, we generalize high-resolution architectures using a unified pipeline named PointHR, which includes a knn-based sequence operator for feature extraction and a differential resampling operator to efficiently communicate different resolutions. Additionally, we propose to avoid numerous on-the-fly computations of high-resolution architectures by pre-computing the indices for both sequence and resampling operators. By doing so, we deliver highly competitive high-resolution architectures while capitalizing on the benefits of well-designed point cloud blocks without additional effort. To evaluate these architectures for dense point cloud analysis, we conduct thorough experiments using S3DIS and ScanNetV2 datasets, where the proposed PointHR outperforms recent state-of-the-art methods without any bells and whistles. The source code is available at \url{https://github.com/haibo-qiu/PointHR}.
Abstract:Visual chart recognition systems are gaining increasing attention due to the growing demand for automatically identifying table headers and values from chart images. Current methods rely on keypoint detection to estimate data element shapes in charts but suffer from grouping errors in post-processing. To address this issue, we propose ChartDETR, a transformer-based multi-shape detector that localizes keypoints at the corners of regular shapes to reconstruct multiple data elements in a single chart image. Our method predicts all data element shapes at once by introducing query groups in set prediction, eliminating the need for further postprocessing. This property allows ChartDETR to serve as a unified framework capable of representing various chart types without altering the network architecture, effectively detecting data elements of diverse shapes. We evaluated ChartDETR on three datasets, achieving competitive results across all chart types without any additional enhancements. For example, ChartDETR achieved an F1 score of 0.98 on Adobe Synthetic, significantly outperforming the previous best model with a 0.71 F1 score. Additionally, we obtained a new state-of-the-art result of 0.97 on ExcelChart400k. The code will be made publicly available.
Abstract:A generative model for high-fidelity point clouds is of great importance in synthesizing 3d environments for applications such as autonomous driving and robotics. Despite the recent success of deep generative models for 2d images, it is non-trivial to generate 3d point clouds without a comprehensive understanding of both local and global geometric structures. In this paper, we devise a new 3d point cloud generation framework using a divide-and-conquer approach, where the whole generation process can be divided into a set of patch-wise generation tasks. Specifically, all patch generators are based on learnable priors, which aim to capture the information of geometry primitives. We introduce point- and patch-wise transformers to enable the interactions between points and patches. Therefore, the proposed divide-and-conquer approach contributes to a new understanding of point cloud generation from the geometry constitution of 3d shapes. Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation, where it clearly outperforms recent state-of-the-art methods for high-fidelity point cloud generation.
Abstract:Egocentric action recognition is gaining significant attention in the field of human action recognition. In this paper, we address data scarcity issue in egocentric action recognition from a compositional generalization perspective. To tackle this problem, we propose a free-form composition network (FFCN) that can simultaneously learn disentangled verb, preposition, and noun representations, and then use them to compose new samples in the feature space for rare classes of action videos. First, we use a graph to capture the spatial-temporal relations among different hand/object instances in each action video. We thus decompose each action into a set of verb and preposition spatial-temporal representations using the edge features in the graph. The temporal decomposition extracts verb and preposition representations from different video frames, while the spatial decomposition adaptively learns verb and preposition representations from action-related instances in each frame. With these spatial-temporal representations of verbs and prepositions, we can compose new samples for those rare classes in a free-form manner, which is not restricted to a rigid form of a verb and a noun. The proposed FFCN can directly generate new training data samples for rare classes, hence significantly improve action recognition performance. We evaluated our method on three popular egocentric action recognition datasets, Something-Something V2, H2O, and EPIC-KITCHENS-100, and the experimental results demonstrate the effectiveness of the proposed method for handling data scarcity problems, including long-tailed and few-shot egocentric action recognition.
Abstract:A pooling operation is essential for effective graph-level representation learning, where the node drop pooling has become one mainstream graph pooling technology. However, current node drop pooling methods usually keep the top-k nodes according to their significance scores, which ignore the graph diversity in terms of the node features and the graph structures, thus resulting in suboptimal graph-level representations. To address the aforementioned issue, we propose a novel plug-and-play score scheme and refer to it as MID, which consists of a \textbf{M}ultidimensional score space with two operations, \textit{i.e.}, fl\textbf{I}pscore and \textbf{D}ropscore. Specifically, the multidimensional score space depicts the significance of nodes through multiple criteria; the flipscore encourages the maintenance of dissimilar node features; and the dropscore forces the model to notice diverse graph structures instead of being stuck in significant local structures. To evaluate the effectiveness of our proposed MID, we perform extensive experiments by applying it to a wide variety of recent node drop pooling methods, including TopKPool, SAGPool, GSAPool, and ASAP. Specifically, the proposed MID can efficiently and consistently achieve about 2.8\% average improvements over the above four methods on seventeen real-world graph classification datasets, including four social datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, and COLLAB), and thirteen biochemical datasets (D\&D, PROTEINS, NCI1, MUTAG, PTC-MR, NCI109, ENZYMES, MUTAGENICITY, FRANKENSTEIN, HIV, BBBP, TOXCAST, and TOX21). Code is available at~\url{https://github.com/whuchuang/mid}.
Abstract:Although remarkable advancements have been made recently in point cloud analysis through the exploration of transformer architecture, it remains challenging to effectively learn local and global structures within point clouds. In this paper, we propose a new transformer architecture equipped with a collect-and-distribute mechanism to communicate short- and long-range contexts of point clouds, which we refer to as CDFormer. Specifically, we first utilize self-attention to capture short-range interactions within each local patch, and the updated local features are then collected into a set of proxy reference points from which we can extract long-range contexts. Afterward, we distribute the learned long-range contexts back to local points via cross-attention. To address the position clues for short- and long-range contexts, we also introduce context-aware position encoding to facilitate position-aware communications between points. We perform experiments on four popular point cloud datasets, namely ModelNet40, ScanObjectNN, S3DIS, and ShapeNetPart, for classification and segmentation. Results show the effectiveness of the proposed CDFormer, delivering several new state-of-the-art performances on point cloud classification and segmentation tasks. The code is available at \url{https://github.com/haibo-qiu/CDFormer}.
Abstract:Human-object interactions (HOIs) are crucial for human-centric scene understanding applications such as human-centric visual generation, AR/VR, and robotics. Since existing methods mainly explore capturing HOIs, rendering HOI remains less investigated. In this paper, we address this challenge in HOI animation from a compositional perspective, i.e., animating novel HOIs including novel interaction, novel human and/or novel object driven by a novel pose sequence. Specifically, we adopt neural human-object deformation to model and render HOI dynamics based on implicit neural representations. To enable the interaction pose transferring among different persons and objects, we then devise a new compositional conditional neural radiance field (or CC-NeRF), which decomposes the interdependence between human and object using latent codes to enable compositionally animation control of novel HOIs. Experiments show that the proposed method can generalize well to various novel HOI animation settings. Our project page is https://zhihou7.github.io/CHONA/
Abstract:Pseudo Labeling is a technique used to improve the performance of semi-supervised Graph Neural Networks (GNNs) by generating additional pseudo-labels based on confident predictions. However, the quality of generated pseudo-labels has long been a concern due to the sensitivity of the classification objective to given labels. To avoid the untrustworthy classification supervision indicating ``a node belongs to a specific class,'' we favor the fault-tolerant contrasting supervision demonstrating ``two nodes do not belong to the same class.'' Thus, the problem of generating high-quality pseudo-labels is then transformed into a relaxed version, i.e., finding reliable contrasting pairs. To achieve this, we propose a general framework for GNNs, termed Pseudo Contrastive Learning (PCL). It separates two nodes whose positive and negative pseudo-labels target the same class. To incorporate topological knowledge into learning, we devise a topologically weighted contrastive loss that spends more effort separating negative pairs with smaller topological distances. Additionally, to alleviate the heavy reliance on data augmentation, we augment nodes only by applying dropout to the encoded representations. Theoretically, we prove that PCL with the lightweight augmentation works like a representation regularizer to effectively learn separation between negative pairs. Experimentally, we employ PCL on various models, which consistently outperform their counterparts using other popular general techniques on five real-world graphs.
Abstract:With recent success of deep learning in 2D visual recognition, deep learning-based 3D point cloud analysis has received increasing attention from the community, especially due to the rapid development of autonomous driving technologies. However, most existing methods directly learn point features in the spatial domain, leaving the local structures in the spectral domain poorly investigated. In this paper, we introduce a new method, PointWavelet, to explore local graphs in the spectral domain via a learnable graph wavelet transform. Specifically, we first introduce the graph wavelet transform to form multi-scale spectral graph convolution to learn effective local structural representations. To avoid the time-consuming spectral decomposition, we then devise a learnable graph wavelet transform, which significantly accelerates the overall training process. Extensive experiments on four popular point cloud datasets, ModelNet40, ScanObjectNN, ShapeNet-Part, and S3DIS, demonstrate the effectiveness of the proposed method on point cloud classification and segmentation.