Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"speech": models, code, and papers

Libri-Adapt: A New Speech Dataset for Unsupervised Domain Adaptation

Sep 06, 2020
Akhil Mathur, Fahim Kawsar, Nadia Berthouze, Nicholas D. Lane

This paper introduces a new dataset, Libri-Adapt, to support unsupervised domain adaptation research on speech recognition models. Built on top of the LibriSpeech corpus, Libri-Adapt contains English speech recorded on mobile and embedded-scale microphones, and spans 72 different domains that are representative of the challenging practical scenarios encountered by ASR models. More specifically, Libri-Adapt facilitates the study of domain shifts in ASR models caused by a) different acoustic environments, b) variations in speaker accents, c) heterogeneity in the hardware and platform software of the microphones, and d) a combination of the aforementioned three shifts. We also provide a number of baseline results quantifying the impact of these domain shifts on the Mozilla DeepSpeech2 ASR model.

* 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, pp. 7439-7443 
* 5 pages, Published at IEEE ICASSP 2020 

  Access Paper or Ask Questions

Automatic Estimation of Inteligibility Measure for Consonants in Speech

May 12, 2020
Ali Abavisani, Mark Hasegawa-Johnson

In this article, we provide a model to estimate a real-valued measure of the intelligibility of individual speech segments. We trained regression models based on Convolutional Neural Networks (CNN) for stop consonants \textipa{/p,t,k,b,d,g/} associated with vowel \textipa{/A/}, to estimate the corresponding Signal to Noise Ratio (SNR) at which the Consonant-Vowel (CV) sound becomes intelligible for Normal Hearing (NH) ears. The intelligibility measure for each sound is called SNR$_{90}$, and is defined to be the SNR level at which human participants are able to recognize the consonant at least 90\% correctly, on average, as determined in prior experiments with NH subjects. Performance of the CNN is compared to a baseline prediction based on automatic speech recognition (ASR), specifically, a constant offset subtracted from the SNR at which the ASR becomes capable of correctly labeling the consonant. Compared to baseline, our models were able to accurately estimate the SNR$_{90}$~intelligibility measure with less than 2 [dB$^2$] Mean Squared Error (MSE) on average, while the baseline ASR-defined measure computes SNR$_{90}$~with a variance of 5.2 to 26.6 [dB$^2$], depending on the consonant.

* 5 pages, 1 figure, 7 tables, submitted to Inter Speech 2020 Conference 

  Access Paper or Ask Questions

speechocean762: An Open-Source Non-native English Speech Corpus For Pronunciation Assessment

Apr 03, 2021
Junbo Zhang, Zhiwen Zhang, Yongqing Wang, Zhiyong Yan, Qiong Song, Yukai Huang, Ke Li, Daniel Povey, Yujun Wang

This paper introduces a new open-source speech corpus named "speechocean762" designed for pronunciation assessment use, consisting of 5000 English utterances from 250 non-native speakers, where half of the speakers are children. Five experts annotated each of the utterances at sentence-level, word-level and phoneme-level. A baseline system is released in open source to illustrate the phoneme-level pronunciation assessment workflow on this corpus. This corpus is allowed to be used freely for commercial and non-commercial purposes. It is available for free download from OpenSLR, and the corresponding baseline system is published in the Kaldi speech recognition toolkit.

  Access Paper or Ask Questions

Leveraging End-to-End Speech Recognition with Neural Architecture Search

Dec 11, 2019
Ahmed Baruwa, Mojeed Abisiga, Ibrahim Gbadegesin, Afeez Fakunle

Deep neural networks (DNNs) have been demonstrated to outperform many traditional machine learning algorithms in Automatic Speech Recognition (ASR). In this paper, we show that a large improvement in the accuracy of deep speech models can be achieved with effective Neural Architecture Optimization at a very low computational cost. Phone recognition tests with the popular LibriSpeech and TIMIT benchmarks proved this fact by displaying the ability to discover and train novel candidate models within a few hours (less than a day) many times faster than the attention-based seq2seq models. Our method achieves test error of 7% Word Error Rate (WER) on the LibriSpeech corpus and 13% Phone Error Rate (PER) on the TIMIT corpus, on par with state-of-the-art results.

* IJSER, vol 10, Issue 11, 2019, pp 1113-1119 

  Access Paper or Ask Questions

Memory Visualization for Gated Recurrent Neural Networks in Speech Recognition

Feb 27, 2017
Zhiyuan Tang, Ying Shi, Dong Wang, Yang Feng, Shiyue Zhang

Recurrent neural networks (RNNs) have shown clear superiority in sequence modeling, particularly the ones with gated units, such as long short-term memory (LSTM) and gated recurrent unit (GRU). However, the dynamic properties behind the remarkable performance remain unclear in many applications, e.g., automatic speech recognition (ASR). This paper employs visualization techniques to study the behavior of LSTM and GRU when performing speech recognition tasks. Our experiments show some interesting patterns in the gated memory, and some of them have inspired simple yet effective modifications on the network structure. We report two of such modifications: (1) lazy cell update in LSTM, and (2) shortcut connections for residual learning. Both modifications lead to more comprehensible and powerful networks.

* ICASSP 2017 

  Access Paper or Ask Questions

Combined Acoustic and Pronunciation Modelling for Non-Native Speech Recognition

Nov 06, 2007
Ghazi Bouselmi, Dominique Fohr, Irina Illina

In this paper, we present several adaptation methods for non-native speech recognition. We have tested pronunciation modelling, MLLR and MAP non-native pronunciation adaptation and HMM models retraining on the HIWIRE foreign accented English speech database. The ``phonetic confusion'' scheme we have developed consists in associating to each spoken phone several sequences of confused phones. In our experiments, we have used different combinations of acoustic models representing the canonical and the foreign pronunciations: spoken and native models, models adapted to the non-native accent with MAP and MLLR. The joint use of pronunciation modelling and acoustic adaptation led to further improvements in recognition accuracy. The best combination of the above mentioned techniques resulted in a relative word error reduction ranging from 46% to 71%.

* Dans InterSpeech 2007 (2007) 

  Access Paper or Ask Questions

Dropout Regularization for Self-Supervised Learning of Transformer Encoder Speech Representation

Jul 09, 2021
Jian Luo, Jianzong Wang, Ning Cheng, Jing Xiao

Predicting the altered acoustic frames is an effective way of self-supervised learning for speech representation. However, it is challenging to prevent the pretrained model from overfitting. In this paper, we proposed to introduce two dropout regularization methods into the pretraining of transformer encoder: (1) attention dropout, (2) layer dropout. Both of the two dropout methods encourage the model to utilize global speech information, and avoid just copying local spectrum features when reconstructing the masked frames. We evaluated the proposed methods on phoneme classification and speaker recognition tasks. The experiments demonstrate that our dropout approaches achieve competitive results, and improve the performance of classification accuracy on downstream tasks.

* will be presented in INTERSPEECH 2021 

  Access Paper or Ask Questions

BART based semantic correction for Mandarin automatic speech recognition system

Mar 26, 2021
Yun Zhao, Xuerui Yang, Jinchao Wang, Yongyu Gao, Chao Yan, Yuanfu Zhou

Although automatic speech recognition (ASR) systems achieved significantly improvements in recent years, spoken language recognition error occurs which can be easily spotted by human beings. Various language modeling techniques have been developed on post recognition tasks like semantic correction. In this paper, we propose a Transformer based semantic correction method with pretrained BART initialization, Experiments on 10000 hours Mandarin speech dataset show that character error rate (CER) can be effectively reduced by 21.7% relatively compared to our baseline ASR system. Expert evaluation demonstrates that actual improvement of our model surpasses what CER indicates.

* submitted to INTERSPEECH2021 

  Access Paper or Ask Questions

Arabic Text-To-Speech (TTS) Data Preparation

Apr 07, 2022
Hala Al Masri, Muhy Eddin Za'ter

People may be puzzled by the fact that voice over recordings data sets exist in addition to Text-to-Speech (TTS), Synthesis system advancements, albeit this is not the case. The goal of this study is to explain the relevance of TTS as well as the data preparation procedures. TTS relies heavily on recorded data since it can have a substantial influence on the outcomes of TTS modules. Furthermore, whether the domain is specialized or general, appropriate data should be developed to address all predicted language variants and domains. Different recording methodologies, taking into account quality and behavior, may also be advantageous in the development of the module. In light of the lack of Arabic language in present synthesizing systems, numerous variables that impact the flow of recorded utterances are being considered in order to manipulate an Arabic TTS module. In this study, two viewpoints will be discussed: linguistics and the creation of high-quality recordings for TTS. The purpose of this work is to offer light on how ground-truth utterances may influence the evolution of speech systems in terms of naturalness, intelligibility, and understanding. Well provide voice actor specs as well as data specs that will assist both voice actors and voice coaches in the studio as well as the annotators who will be evaluating the audios.

  Access Paper or Ask Questions

Multi-Scale Spectrogram Modelling for Neural Text-to-Speech

Jun 29, 2021
Ammar Abbas, Bajibabu Bollepalli, Alexis Moinet, Arnaud Joly, Penny Karanasou, Peter Makarov, Simon Slangens, Sri Karlapati, Thomas Drugman

We propose a novel Multi-Scale Spectrogram (MSS) modelling approach to synthesise speech with an improved coarse and fine-grained prosody. We present a generic multi-scale spectrogram prediction mechanism where the system first predicts coarser scale mel-spectrograms that capture the suprasegmental information in speech, and later uses these coarser scale mel-spectrograms to predict finer scale mel-spectrograms capturing fine-grained prosody. We present details for two specific versions of MSS called Word-level MSS and Sentence-level MSS where the scales in our system are motivated by the linguistic units. The Word-level MSS models word, phoneme, and frame-level spectrograms while Sentence-level MSS models sentence-level spectrogram in addition. Subjective evaluations show that Word-level MSS performs statistically significantly better compared to the baseline on two voices.

* Accepted for the 11th ISCA Speech Synthesis Workshop (SSW11) 

  Access Paper or Ask Questions