What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Jan 25, 2025
Abstract:This paper presents an approach that combines Human-In-The-Loop Reinforcement Learning (HITL RL) with principles derived from music theory to facilitate real-time generation of musical compositions. HITL RL, previously employed in diverse applications such as modelling humanoid robot mechanics and enhancing language models, harnesses human feedback to refine the training process. In this study, we develop a HILT RL framework that can leverage the constraints and principles in music theory. In particular, we propose an episodic tabular Q-learning algorithm with an epsilon-greedy exploration policy. The system generates musical tracks (compositions), continuously enhancing its quality through iterative human-in-the-loop feedback. The reward function for this process is the subjective musical taste of the user.
* This is a preprint of a paper presented at the 2023 IEEE
International Conference on Big Data (BigData). It has been made public for
the benefit of the community and should be considered a preprint rather than
a formally reviewed paper
Via

Mar 07, 2025
Abstract:The rapid advancement of large language models (LLMs) and artificial intelligence-generated content (AIGC) has accelerated AI-native applications, such as AI-based storybooks that automate engaging story production for children. However, challenges remain in improving story attractiveness, enriching storytelling expressiveness, and developing open-source evaluation benchmarks and frameworks. Therefore, we propose and opensource MM-StoryAgent, which creates immersive narrated video storybooks with refined plots, role-consistent images, and multi-channel audio. MM-StoryAgent designs a multi-agent framework that employs LLMs and diverse expert tools (generative models and APIs) across several modalities to produce expressive storytelling videos. The framework enhances story attractiveness through a multi-stage writing pipeline. In addition, it improves the immersive storytelling experience by integrating sound effects with visual, music and narrative assets. MM-StoryAgent offers a flexible, open-source platform for further development, where generative modules can be substituted. Both objective and subjective evaluation regarding textual story quality and alignment between modalities validate the effectiveness of our proposed MM-StoryAgent system. The demo and source code are available.
Via

Feb 13, 2025
Abstract:Recent advances in generative AI music have resulted in new technologies that are being framed as co-creative tools for musicians with early work demonstrating their potential to add to music practice. While the field has seen many valuable contributions, work that involves practising musicians in the design and development of these tools is limited, with the majority of work including them only once a tool has been developed. In this paper, we present a case study that explores the needs of practising musicians through the co-design of a musical variation system, highlighting the importance of involving a diverse range of musicians throughout the design process and uncovering various design insights. This was achieved through two workshops and a two week ecological evaluation, where musicians from different musical backgrounds offered valuable insights not only on a musical system's design but also on how a musical AI could be integrated into their musical practices.
* Paper accepted into CHI 2025, Yokohama Japan, April 26th - May 1st
Via

Mar 04, 2025
Abstract:This paper introduces HarmonySet, a comprehensive dataset designed to advance video-music understanding. HarmonySet consists of 48,328 diverse video-music pairs, annotated with detailed information on rhythmic synchronization, emotional alignment, thematic coherence, and cultural relevance. We propose a multi-step human-machine collaborative framework for efficient annotation, combining human insights with machine-generated descriptions to identify key transitions and assess alignment across multiple dimensions. Additionally, we introduce a novel evaluation framework with tasks and metrics to assess the multi-dimensional alignment of video and music, including rhythm, emotion, theme, and cultural context. Our extensive experiments demonstrate that HarmonySet, along with the proposed evaluation framework, significantly improves the ability of multimodal models to capture and analyze the intricate relationships between video and music.
* Accepted at CVPR 2025. Project page: https://harmonyset.github.io/
Via

Jan 27, 2025
Abstract:Diffusion based Text-To-Music (TTM) models generate music corresponding to text descriptions. Typically UNet based diffusion models condition on text embeddings generated from a pre-trained large language model or from a cross-modality audio-language representation model. This work proposes a diffusion based TTM, in which the UNet is conditioned on both (i) a uni-modal language model (e.g., T5) via cross-attention and (ii) a cross-modal audio-language representation model (e.g., CLAP) via Feature-wise Linear Modulation (FiLM). The diffusion model is trained to exploit both a local text representation from the T5 and a global representation from the CLAP. Furthermore, we propose modifications that extract both global and local representations from the T5 through pooling mechanisms that we call mean pooling and self-attention pooling. This approach mitigates the need for an additional encoder (e.g., CLAP) to extract a global representation, thereby reducing the number of model parameters. Our results show that incorporating the CLAP global embeddings to the T5 local embeddings enhances text adherence (KL=1.47) compared to a baseline model solely relying on the T5 local embeddings (KL=1.54). Alternatively, extracting global text embeddings directly from the T5 local embeddings through the proposed mean pooling approach yields superior generation quality (FAD=1.89) while exhibiting marginally inferior text adherence (KL=1.51) against the model conditioned on both CLAP and T5 text embeddings (FAD=1.94 and KL=1.47). Our proposed solution is not only efficient but also compact in terms of the number of parameters required.
* Accepted at ICASSP 2025
Via

Jan 18, 2025
Abstract:The technology for generating music from textual descriptions has seen rapid advancements. However, evaluating text-to-music (TTM) systems remains a significant challenge, primarily due to the difficulty of balancing performance and cost with existing objective and subjective evaluation methods. In this paper, we propose an automatic assessment task for TTM models to align with human perception. To address the TTM evaluation challenges posed by the professional requirements of music evaluation and the complexity of the relationship between text and music, we collect MusicEval, the first generative music assessment dataset. This dataset contains 2,748 music clips generated by 31 advanced and widely used models in response to 384 text prompts, along with 13,740 ratings from 14 music experts. Furthermore, we design a CLAP-based assessment model built on this dataset, and our experimental results validate the feasibility of the proposed task, providing a valuable reference for future development in TTM evaluation. The dataset is available at https://www.aishelltech.com/AISHELL_7A.
* Accepted by ICASSP 2025
Via

Mar 10, 2025
Abstract:Conditional motion generation has been extensively studied in computer vision, yet two critical challenges remain. First, while masked autoregressive methods have recently outperformed diffusion-based approaches, existing masking models lack a mechanism to prioritize dynamic frames and body parts based on given conditions. Second, existing methods for different conditioning modalities often fail to integrate multiple modalities effectively, limiting control and coherence in generated motion. To address these challenges, we propose Motion Anything, a multimodal motion generation framework that introduces an Attention-based Mask Modeling approach, enabling fine-grained spatial and temporal control over key frames and actions. Our model adaptively encodes multimodal conditions, including text and music, improving controllability. Additionally, we introduce Text-Motion-Dance (TMD), a new motion dataset consisting of 2,153 pairs of text, music, and dance, making it twice the size of AIST++, thereby filling a critical gap in the community. Extensive experiments demonstrate that Motion Anything surpasses state-of-the-art methods across multiple benchmarks, achieving a 15% improvement in FID on HumanML3D and showing consistent performance gains on AIST++ and TMD. See our project website https://steve-zeyu-zhang.github.io/MotionAnything
Via

Jan 17, 2025
Abstract:Composing music for video is essential yet challenging, leading to a growing interest in automating music generation for video applications. Existing approaches often struggle to achieve robust music-video correspondence and generative diversity, primarily due to inadequate feature alignment methods and insufficient datasets. In this study, we present General Video-to-Music Generation model (GVMGen), designed for generating high-related music to the video input. Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions, ensuring the preservation of pertinent features while minimizing redundancy. Remarkably, our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios. We also propose an evaluation model along with two novel objective metrics for assessing video-music alignment. Additionally, we have compiled a large-scale dataset comprising diverse types of video-music pairs. Experimental results demonstrate that GVMGen surpasses previous models in terms of music-video correspondence, generative diversity, and application universality.
* Accepted by the 39th AAAI Conference on Artificial Intelligence
(AAAI-25)
Via

Jan 28, 2025
Abstract:We present and release MIDI-GPT, a generative system based on the Transformer architecture that is designed for computer-assisted music composition workflows. MIDI-GPT supports the infilling of musical material at the track and bar level, and can condition generation on attributes including: instrument type, musical style, note density, polyphony level, and note duration. In order to integrate these features, we employ an alternative representation for musical material, creating a time-ordered sequence of musical events for each track and concatenating several tracks into a single sequence, rather than using a single time-ordered sequence where the musical events corresponding to different tracks are interleaved. We also propose a variation of our representation allowing for expressiveness. We present experimental results that demonstrate that MIDI-GPT is able to consistently avoid duplicating the musical material it was trained on, generate music that is stylistically similar to the training dataset, and that attribute controls allow enforcing various constraints on the generated material. We also outline several real-world applications of MIDI-GPT, including collaborations with industry partners that explore the integration and evaluation of MIDI-GPT into commercial products, as well as several artistic works produced using it.
* AAAI 25
Via

Feb 03, 2025
Abstract:Artistic creation is often seen as a uniquely human endeavor, yet robots bring distinct advantages to music-making, such as precise tempo control, unpredictable rhythmic complexities, and the ability to coordinate intricate human and robot performances. While many robotic music systems aim to mimic human musicianship, our work emphasizes the unique strengths of robots, resulting in a novel multi-robot performance instrument called the Beatbots, capable of producing music that is challenging for humans to replicate using current methods. The Beatbots were designed using an ``informed prototyping'' process, incorporating feedback from three musicians throughout development. We evaluated the Beatbots through a live public performance, surveying participants (N=28) to understand how they perceived and interacted with the robotic performance. Results show that participants valued the playfulness of the experience, the aesthetics of the robot system, and the unconventional robot-generated music. Expert musicians and non-expert roboticists demonstrated especially positive mindset shifts during the performance, although participants across all demographics had favorable responses. We propose design principles to guide the development of future robotic music systems and identify key robotic music affordances that our musician consultants considered particularly important for robotic music performance.
* Copyright protected by IEEE/ACM, 10 pages, 4 figures, 1 table, in
proceedings of 20th IEEE/ACM International Conference on Human-Robot
Interaction (HRI 2025)
Via
