Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Topic Modeling": models, code, and papers

A Topic Modeling Toolbox Using Belief Propagation

Apr 05, 2012
Jia Zeng

Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interests and touches on many important applications in text mining, computer vision and computational biology. This paper introduces a topic modeling toolbox (TMBP) based on the belief propagation (BP) algorithms. TMBP toolbox is implemented by MEX C++/Matlab/Octave for either Windows 7 or Linux. Compared with existing topic modeling packages, the novelty of this toolbox lies in the BP algorithms for learning LDA-based topic models. The current version includes BP algorithms for latent Dirichlet allocation (LDA), author-topic models (ATM), relational topic models (RTM), and labeled LDA (LaLDA). This toolbox is an ongoing project and more BP-based algorithms for various topic models will be added in the near future. Interested users may also extend BP algorithms for learning more complicated topic models. The source codes are freely available under the GNU General Public Licence, Version 1.0 at

* Journal of Machine Learning Research (13) 2233-2236, 2012 
* 4 pages 

Analysis and tuning of hierarchical topic models based on Renyi entropy approach

Jan 19, 2021
Sergei Koltcov, Vera Ignatenko, Maxim Terpilovskii, Paolo Rosso

Hierarchical topic modeling is a potentially powerful instrument for determining the topical structure of text collections that allows constructing a topical hierarchy representing levels of topical abstraction. However, tuning of parameters of hierarchical models, including the number of topics on each hierarchical level, remains a challenging task and an open issue. In this paper, we propose a Renyi entropy-based approach for a partial solution to the above problem. First, we propose a Renyi entropy-based metric of quality for hierarchical models. Second, we propose a practical concept of hierarchical topic model tuning tested on datasets with human mark-up. In the numerical experiments, we consider three different hierarchical models, namely, hierarchical latent Dirichlet allocation (hLDA) model, hierarchical Pachinko allocation model (hPAM), and hierarchical additive regularization of topic models (hARTM). We demonstrate that hLDA model possesses a significant level of instability and, moreover, the derived numbers of topics are far away from the true numbers for labeled datasets. For hPAM model, the Renyi entropy approach allows us to determine only one level of the data structure. For hARTM model, the proposed approach allows us to estimate the number of topics for two hierarchical levels.


ATM:Adversarial-neural Topic Model

Nov 01, 2018
Rui Wang, Deyu Zhou, Yulan He

Topic models are widely used for thematic structure discovery in text. But traditional topic models often require dedicated inference procedures for specific tasks at hand. Also, they are not designed to generate word-level semantic representations. To address these limitations, we propose a topic modeling approach based on Generative Adversarial Nets (GANs), called Adversarial-neural Topic Model (ATM). The proposed ATM models topics with Dirichlet prior and employs a generator network to capture the semantic patterns among latent topics. Meanwhile, the generator could also produce word-level semantic representations. To illustrate the feasibility of porting ATM to tasks other than topic modeling, we apply ATM for open domain event extraction. Our experimental results on the two public corpora show that ATM generates more coherence topics, outperforming a number of competitive baselines. Moreover, ATM is able to extract meaningful events from news articles.


A network approach to topic models

Jul 19, 2018
Martin Gerlach, Tiago P. Peixoto, Eduardo G. Altmann

One of the main computational and scientific challenges in the modern age is to extract useful information from unstructured texts. Topic models are one popular machine-learning approach which infers the latent topical structure of a collection of documents. Despite their success --- in particular of its most widely used variant called Latent Dirichlet Allocation (LDA) --- and numerous applications in sociology, history, and linguistics, topic models are known to suffer from severe conceptual and practical problems, e.g. a lack of justification for the Bayesian priors, discrepancies with statistical properties of real texts, and the inability to properly choose the number of topics. Here we obtain a fresh view on the problem of identifying topical structures by relating it to the problem of finding communities in complex networks. This is achieved by representing text corpora as bipartite networks of documents and words. By adapting existing community-detection methods -- using a stochastic block model (SBM) with non-parametric priors -- we obtain a more versatile and principled framework for topic modeling (e.g., it automatically detects the number of topics and hierarchically clusters both the words and documents). The analysis of artificial and real corpora demonstrates that our SBM approach leads to better topic models than LDA in terms of statistical model selection. More importantly, our work shows how to formally relate methods from community detection and topic modeling, opening the possibility of cross-fertilization between these two fields.

* Science Advances 4, eaaq1360 (2018) 
* 22 pages, 10 figures, code available at 

AI supported Topic Modeling using KNIME-Workflows

Apr 15, 2021
Jamal Al Qundus, Silvio Peikert, Adrian Paschke

Topic modeling algorithms traditionally model topics as list of weighted terms. These topic models can be used effectively to classify texts or to support text mining tasks such as text summarization or fact extraction. The general procedure relies on statistical analysis of term frequencies. The focus of this work is on the implementation of the knowledge-based topic modelling services in a KNIME workflow. A brief description and evaluation of the DBPedia-based enrichment approach and the comparative evaluation of enriched topic models will be outlined based on our previous work. DBpedia-Spotlight is used to identify entities in the input text and information from DBpedia is used to extend these entities. We provide a workflow developed in KNIME implementing this approach and perform a result comparison of topic modeling supported by knowledge base information to traditional LDA. This topic modeling approach allows semantic interpretation both by algorithms and by humans.

* 7 pages, 7 figures. Qurator2020 - Conference on Digital Curation Technologies 

Document Informed Neural Autoregressive Topic Models with Distributional Prior

Sep 15, 2018
Pankaj Gupta, Yatin Chaudhary, Florian Buettner, Hinrich Schütze

We address two challenges in topic models: (1) Context information around words helps in determining their actual meaning, e.g., "networks" used in the contexts artificial neural networks vs. biological neuron networks. Generative topic models infer topic-word distributions, taking no or only little context into account. Here, we extend a neural autoregressive topic model to exploit the full context information around words in a document in a language modeling fashion. The proposed model is named as iDocNADE. (2) Due to the small number of word occurrences (i.e., lack of context) in short text and data sparsity in a corpus of few documents, the application of topic models is challenging on such texts. Therefore, we propose a simple and efficient way of incorporating external knowledge into neural autoregressive topic models: we use embeddings as a distributional prior. The proposed variants are named as DocNADE2 and iDocNADE2. We present novel neural autoregressive topic model variants that consistently outperform state-of-the-art generative topic models in terms of generalization, interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.

* AAAI2019. arXiv admin note: substantial text overlap with arXiv:1808.03793 

Gaussian Process Topic Models

Mar 15, 2012
Amrudin Agovic, Arindam Banerjee

We introduce Gaussian Process Topic Models (GPTMs), a new family of topic models which can leverage a kernel among documents while extracting correlated topics. GPTMs can be considered a systematic generalization of the Correlated Topic Models (CTMs) using ideas from Gaussian Process (GP) based embedding. Since GPTMs work with both a topic covariance matrix and a document kernel matrix, learning GPTMs involves a novel component-solving a suitable Sylvester equation capturing both topic and document dependencies. The efficacy of GPTMs is demonstrated with experiments evaluating the quality of both topic modeling and embedding.

* Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010) 

Ordering-sensitive and Semantic-aware Topic Modeling

Feb 12, 2015
Min Yang, Tianyi Cui, Wenting Tu

Topic modeling of textual corpora is an important and challenging problem. In most previous work, the "bag-of-words" assumption is usually made which ignores the ordering of words. This assumption simplifies the computation, but it unrealistically loses the ordering information and the semantic of words in the context. In this paper, we present a Gaussian Mixture Neural Topic Model (GMNTM) which incorporates both the ordering of words and the semantic meaning of sentences into topic modeling. Specifically, we represent each topic as a cluster of multi-dimensional vectors and embed the corpus into a collection of vectors generated by the Gaussian mixture model. Each word is affected not only by its topic, but also by the embedding vector of its surrounding words and the context. The Gaussian mixture components and the topic of documents, sentences and words can be learnt jointly. Extensive experiments show that our model can learn better topics and more accurate word distributions for each topic. Quantitatively, comparing to state-of-the-art topic modeling approaches, GMNTM obtains significantly better performance in terms of perplexity, retrieval accuracy and classification accuracy.

* To appear in proceedings of AAAI 2015 

Learning Topic Models - Going beyond SVD

Apr 10, 2012
Sanjeev Arora, Rong Ge, Ankur Moitra

Topic Modeling is an approach used for automatic comprehension and classification of data in a variety of settings, and perhaps the canonical application is in uncovering thematic structure in a corpus of documents. A number of foundational works both in machine learning and in theory have suggested a probabilistic model for documents, whereby documents arise as a convex combination of (i.e. distribution on) a small number of topic vectors, each topic vector being a distribution on words (i.e. a vector of word-frequencies). Similar models have since been used in a variety of application areas; the Latent Dirichlet Allocation or LDA model of Blei et al. is especially popular. Theoretical studies of topic modeling focus on learning the model's parameters assuming the data is actually generated from it. Existing approaches for the most part rely on Singular Value Decomposition(SVD), and consequently have one of two limitations: these works need to either assume that each document contains only one topic, or else can only recover the span of the topic vectors instead of the topic vectors themselves. This paper formally justifies Nonnegative Matrix Factorization(NMF) as a main tool in this context, which is an analog of SVD where all vectors are nonnegative. Using this tool we give the first polynomial-time algorithm for learning topic models without the above two limitations. The algorithm uses a fairly mild assumption about the underlying topic matrix called separability, which is usually found to hold in real-life data. A compelling feature of our algorithm is that it generalizes to models that incorporate topic-topic correlations, such as the Correlated Topic Model and the Pachinko Allocation Model. We hope that this paper will motivate further theoretical results that use NMF as a replacement for SVD - just as NMF has come to replace SVD in many applications.


Topic Extraction of Crawled Documents Collection using Correlated Topic Model in MapReduce Framework

Jan 06, 2020
Mi Khine Oo, May Aye Khine

The tremendous increase in the amount of available research documents impels researchers to propose topic models to extract the latent semantic themes of a documents collection. However, how to extract the hidden topics of the documents collection has become a crucial task for many topic model applications. Moreover, conventional topic modeling approaches suffer from the scalability problem when the size of documents collection increases. In this paper, the Correlated Topic Model with variational Expectation-Maximization algorithm is implemented in MapReduce framework to solve the scalability problem. The proposed approach utilizes the dataset crawled from the public digital library. In addition, the full-texts of the crawled documents are analysed to enhance the accuracy of MapReduce CTM. The experiments are conducted to demonstrate the performance of the proposed algorithm. From the evaluation, the proposed approach has a comparable performance in terms of topic coherences with LDA implemented in MapReduce framework.

* 13 pages