What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Jun 06, 2025
Abstract:Fake news and misinformation poses a significant threat to society, making efficient mitigation essential. However, manual fact-checking is costly and lacks scalability. Large Language Models (LLMs) offer promise in automating counter-response generation to mitigate misinformation, but a critical challenge lies in their tendency to hallucinate non-factual information. Existing models mainly rely on LLM self-feedback to reduce hallucination, but this approach is computationally expensive. In this paper, we propose MisMitiFact, Misinformation Mitigation grounded in Facts, an efficient framework for generating fact-grounded counter-responses at scale. MisMitiFact generates simple critique feedback to refine LLM outputs, ensuring responses are grounded in evidence. We develop lightweight, fine-grained critique models trained on data sourced from readily available fact-checking sites to identify and correct errors in key elements such as numerals, entities, and topics in LLM generations. Experiments show that MisMitiFact generates counter-responses of comparable quality to LLMs' self-feedback while using significantly smaller critique models. Importantly, it achieves ~5x increase in feedback generation throughput, making it highly suitable for cost-effective, large-scale misinformation mitigation. Code and LLM prompt templates are at https://github.com/xxfwin/MisMitiFact.
* accepted to IJCAI 2025
Via

Jun 08, 2025
Abstract:Communication systems aided by movable antennas have been the subject of recent research due to their potentially increased spatial degrees of freedom offered by optimizing the antenna positioning at the transmitter and/or receiver. In this context, a topic that deserves attention is channel estimation. Conventional methods reported recently rely on pilot-assisted strategies to estimate the channel coefficients. In this work, we address the joint channel and symbol estimation problem for an uplink multi-user communication system, where the base station is equipped with a movable antenna array. A semi-blind receiver based on the PARAFAC2 model is formulated to exploit the tensor decomposition structure for the received signals, from which channel and symbol estimates can be jointly obtained via an alternating estimation algorithm. Compared with reference schemes, our preliminary numerical simulations yield remarkable results for the proposed method.
Via

May 29, 2025
Abstract:Conventional bag-of-words approaches for topic modeling, like latent Dirichlet allocation (LDA), struggle with literary text. Literature challenges lexical methods because narrative language focuses on immersive sensory details instead of abstractive description or exposition: writers are advised to "show, don't tell." We propose Retell, a simple, accessible topic modeling approach for literature. Here, we prompt resource-efficient, generative language models (LMs) to tell what passages show, thereby translating narratives' surface forms into higher-level concepts and themes. By running LDA on LMs' retellings of passages, we can obtain more precise and informative topics than by running LDA alone or by directly asking LMs to list topics. To investigate the potential of our method for cultural analytics, we compare our method's outputs to expert-guided annotations in a case study on racial/cultural identity in high school English language arts books.
* 26 pages, 7 figures, Findings of ACL 2025
Via

Jun 05, 2025
Abstract:Given the continuous increase in dataset sizes and the complexity of forecasting models, the trade-off between forecast accuracy and computational cost is emerging as an extremely relevant topic, especially in the context of ensemble learning for time series forecasting. To asses it, we evaluated ten base models and eight ensemble configurations across two large-scale retail datasets (M5 and VN1), considering both point and probabilistic accuracy under varying retraining frequencies. We showed that ensembles consistently improve forecasting performance, particularly in probabilistic settings. However, these gains come at a substantial computational cost, especially for larger, accuracy-driven ensembles. We found that reducing retraining frequency significantly lowers costs, with minimal impact on accuracy, particularly for point forecasts. Moreover, efficiency-driven ensembles offer a strong balance, achieving competitive accuracy with considerably lower costs compared to accuracy-optimized combinations. Most importantly, small ensembles of two or three models are often sufficient to achieve near-optimal results. These findings provide practical guidelines for deploying scalable and cost-efficient forecasting systems, supporting the broader goals of sustainable AI in forecasting. Overall, this work shows that careful ensemble design and retraining strategy selection can yield accurate, robust, and cost-effective forecasts suitable for real-world applications.
Via

Jun 06, 2025
Abstract:Large language models are popular around the world due to their powerful understanding capabilities. As the core component of LLMs, accelerating Transformer through parallelization has gradually become a hot research topic. Mask layers introduce sparsity into Transformer to reduce calculations. However, previous works rarely focus on the performance optimization of sparse Transformer. Moreover, rule-based mechanisms ignore the fusion opportunities of mixed-type operators and fail to adapt to various sequence lengths. To address the above problems, we propose STOF, a framework that incorporates optimizations for Sparse Transformer via flexible masking and operator fusion on GPU. We firstly unify the storage format and kernel implementation for the multi-head attention. Then, we map fusion schemes to compilation templates and determine the optimal parameter setting through a two-stage search engine. The experimental results show that compared to the state-of-the-art work, STOF achieves maximum speedups of 1.7x in MHA computation and 1.5x in end-to-end inference.
Via

Jun 09, 2025
Abstract:AI-generated images have reached a quality level at which humans are incapable of reliably distinguishing them from real images. To counteract the inherent risk of fraud and disinformation, the detection of AI-generated images is a pressing challenge and an active research topic. While many of the presented methods claim to achieve high detection accuracy, they are usually evaluated under idealized conditions. In particular, the adversarial robustness is often neglected, potentially due to a lack of awareness or the substantial effort required to conduct a comprehensive robustness analysis. In this work, we tackle this problem by providing a simpler means to assess the robustness of AI-generated image detectors. We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples. The dataset is created by running attacks against an ensemble of seven state-of-the-art detectors and images generated by four different text-to-image models. Extensive experiments show that our methodology generates adversarial images that transfer with a high success rate to unseen detectors, which can be used to quickly provide an approximate yet still reliable estimate of a detector's adversarial robustness. Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples, highlighting the critical need for the development of more robust methods. We release our dataset at https://huggingface.co/datasets/aimagelab/RAID and evaluation code at https://github.com/pralab/RAID.
Via

Jun 06, 2025
Abstract:Generative AI (genAI) technologies -- specifically, large language models (LLMs) -- and search have evolving relations. We argue for a novel perspective: using genAI to enrich a document corpus so as to improve query-based retrieval effectiveness. The enrichment is based on modifying existing documents or generating new ones. As an empirical proof of concept, we use LLMs to generate documents relevant to a topic which are more retrievable than existing ones. In addition, we demonstrate the potential merits of using corpus enrichment for retrieval augmented generation (RAG) and answer attribution in question answering.
Via

Jun 06, 2025
Abstract:When exposed to complex queries containing multiple conditions, today's large language models (LLMs) tend to produce responses that only partially satisfy the query while neglecting certain conditions. We therefore introduce the concept of Intent Hallucination. In this phenomenon, LLMs either omit (neglecting to address certain parts) or misinterpret (responding to invented query parts) elements of the given query, leading to intent hallucinated generation. To systematically evaluate intent hallucination, we introduce FAITHQA, a novel benchmark for intent hallucination that contains 20,068 problems, covering both query-only and retrieval-augmented generation (RAG) setups with varying topics and difficulty. FAITHQA is the first hallucination benchmark that goes beyond factual verification, tailored to identify the fundamental cause of intent hallucination. By evaluating various LLMs on FAITHQA, we find that (1) intent hallucination is a common issue even for state-of-the-art models, and (2) the phenomenon stems from omission or misinterpretation of LLMs. To facilitate future research, we introduce an automatic LLM generation evaluation metric, CONSTRAINT SCORE, for detecting intent hallucination. Human evaluation results demonstrate that CONSTRAINT SCORE is closer to human performance for intent hallucination compared to baselines.
* Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (ACL 2025)
* Accepted to ACL 2025 main conference
Via

Jun 06, 2025
Abstract:Sensor systems are extremely popular today and vulnerable to sensor data attacks. Due to possible devastating consequences, counteracting sensor data attacks is an extremely important topic, which has not seen sufficient study. This paper develops the first methods that accurately identify/eliminate only the problematic attacked sensor data presented to a sequence estimation/regression algorithm under a powerful attack model constructed based on known/observed attacks. The approach does not assume a known form for the statistical model of the sensor data, allowing data-driven and machine learning sequence estimation/regression algorithms to be protected. A simple protection approach for attackers not endowed with knowledge of the details of our protection approach is first developed, followed by additional processing for attacks based on protection system knowledge. In the cases tested for which it was designed, experimental results show that the simple approach achieves performance indistinguishable, to two decimal places, from that for an approach which knows which sensors are attacked. For cases where the attacker has knowledge of the protection approach, experimental results indicate the additional processing can be configured so that the worst-case degradation under the additional processing and a large number of sensors attacked can be made significantly smaller than the worst-case degradation of the simple approach, and close to an approach which knows which sensors are attacked, for the same number of attacked sensors with just a slight degradation under no attacks. Mathematical descriptions of the worst-case attacks are used to demonstrate the additional processing will provide similar advantages for cases for which we do not have numerical results. All the data-driven processing used in our approaches employ only unattacked training data.
Via

Jun 09, 2025
Abstract:Modern large language models (LLMs) are inherently auto-regressive, requiring input to be serialized into flat sequences regardless of their structural dependencies. This serialization hinders the model's ability to leverage structural inductive biases, especially in tasks such as retrieval-augmented generation (RAG) and reasoning on data with native graph structures, where inter-segment dependencies are crucial. We introduce Graph-KV with the potential to overcome this limitation. Graph-KV leverages the KV-cache of text segments as condensed representations and governs their interaction through structural inductive biases. In this framework, 'target' segments selectively attend only to the KV-caches of their designated 'source' segments, rather than all preceding segments in a serialized sequence. This approach induces a graph-structured block mask, sparsifying attention and enabling a message-passing-like step within the LLM. Furthermore, strategically allocated positional encodings for source and target segments reduce positional bias and context window consumption. We evaluate Graph-KV across three scenarios: (1) seven RAG benchmarks spanning direct inference, multi-hop reasoning, and long-document understanding; (2) Arxiv-QA, a novel academic paper QA task with full-text scientific papers structured as citation ego-graphs; and (3) paper topic classification within a citation network. By effectively reducing positional bias and harnessing structural inductive biases, Graph-KV substantially outperforms baselines, including standard costly sequential encoding, across various settings. Code and the Graph-KV data are publicly available.
Via
