Abstract:Given the continuous increase in dataset sizes and the complexity of forecasting models, the trade-off between forecast accuracy and computational cost is emerging as an extremely relevant topic, especially in the context of ensemble learning for time series forecasting. To asses it, we evaluated ten base models and eight ensemble configurations across two large-scale retail datasets (M5 and VN1), considering both point and probabilistic accuracy under varying retraining frequencies. We showed that ensembles consistently improve forecasting performance, particularly in probabilistic settings. However, these gains come at a substantial computational cost, especially for larger, accuracy-driven ensembles. We found that reducing retraining frequency significantly lowers costs, with minimal impact on accuracy, particularly for point forecasts. Moreover, efficiency-driven ensembles offer a strong balance, achieving competitive accuracy with considerably lower costs compared to accuracy-optimized combinations. Most importantly, small ensembles of two or three models are often sufficient to achieve near-optimal results. These findings provide practical guidelines for deploying scalable and cost-efficient forecasting systems, supporting the broader goals of sustainable AI in forecasting. Overall, this work shows that careful ensemble design and retraining strategy selection can yield accurate, robust, and cost-effective forecasts suitable for real-world applications.
Abstract:In an era of increasing computational capabilities and growing environmental consciousness, organizations face a critical challenge in balancing the accuracy of forecasting models with computational efficiency and sustainability. Global forecasting models, lowering the computational time, have gained significant attention over the years. However, the common practice of retraining these models with new observations raises important questions about the costs of forecasting. Using ten different machine learning and deep learning models, we analyzed various retraining scenarios, ranging from continuous updates to no retraining at all, across two large retail datasets. We showed that less frequent retraining strategies maintain the forecast accuracy while reducing the computational costs, providing a more sustainable approach to large-scale forecasting. We also found that machine learning models are a marginally better choice to reduce the costs of forecasting when coupled with less frequent model retraining strategies as the frequency of the data increases. Our findings challenge the conventional belief that frequent retraining is essential for maintaining forecasting accuracy. Instead, periodic retraining offers a good balance between predictive performance and efficiency, both in the case of point and probabilistic forecasting. These insights provide actionable guidelines for organizations seeking to optimize forecasting pipelines while reducing costs and energy consumption.