Abstract:Using Quantum Computers to solve problems in Recommender Systems that classical computers cannot address is a worthwhile research topic. In this paper, we use Quantum Annealers to address the feature selection problem in recommendation algorithms. This feature selection problem is a Quadratic Unconstrained Binary Optimization(QUBO) problem. By incorporating Counterfactual Analysis, we significantly improve the performance of the item-based KNN recommendation algorithm compared to using pure Mutual Information. Extensive experiments have demonstrated that the use of Counterfactual Analysis holds great promise for addressing such problems.
Abstract:Recognizing various surgical tools, actions and phases from surgery videos is an important problem in computer vision with exciting clinical applications. Existing deep-learning-based methods for this problem either process each surgical video as a series of independent images without considering their dependence, or rely on complicated deep learning models to count for dependence of video frames. In this study, we revealed from exploratory data analysis that surgical videos enjoy relatively simple semantic structure, where the presence of surgical phases and tools can be well modeled by a compact hidden Markov model (HMM). Based on this observation, we propose an HMM-stabilized deep learning method for tool presence detection. A wide range of experiments confirm that the proposed approaches achieve better performance with lower training and running costs, and support more flexible ways to construct and utilize training data in scenarios where not all surgery videos of interest are extensively labelled. These results suggest that popular deep learning approaches with over-complicated model structures may suffer from inefficient utilization of data, and integrating ingredients of deep learning and statistical learning wisely may lead to more powerful algorithms that enjoy competitive performance, transparent interpretation and convenient model training simultaneously.
Abstract:Passive indoor localization, integral to smart buildings, emergency response, and indoor navigation, has traditionally been limited by a focus on single-target localization and reliance on multi-packet CSI. We introduce a novel Multi-target loss, notably enhancing multi-person localization. Utilizing this loss function, our instantaneous CSI-ResNet achieves an impressive 99.21% accuracy at 0.6m precision with single-timestamp CSI. A preprocessing algorithm is implemented to counteract WiFi-induced variability, thereby augmenting robustness. Furthermore, we incorporate Nuclear Norm-Based Transfer Pre-Training, ensuring adaptability in diverse environments, which provides a new paradigm for indoor multi-person localization. Additionally, we have developed an extensive dataset, surpassing existing ones in scope and diversity, to underscore the efficacy of our method and facilitate future fingerprint-based localization research.
Abstract:This study aims to minimize the influence of fake news on social networks by deploying debunkers to propagate true news. This is framed as a reinforcement learning problem, where, at each stage, one user is selected to propagate true news. A challenging issue is episodic reward where the "net" effect of selecting individual debunkers cannot be discerned from the interleaving information propagation on social networks, and only the collective effect from mitigation efforts can be observed. Existing Self-Imitation Learning (SIL) methods have shown promise in learning from episodic rewards, but are ill-suited to the real-world application of fake news mitigation because of their poor sample efficiency. To learn a more effective debunker selection policy for fake news mitigation, this study proposes NAGASIL - Negative sampling and state Augmented Generative Adversarial Self-Imitation Learning, which consists of two improvements geared towards fake news mitigation: learning from negative samples, and an augmented state representation to capture the "real" environment state by integrating the current observed state with the previous state-action pairs from the same campaign. Experiments on two social networks show that NAGASIL yields superior performance to standard GASIL and state-of-the-art fake news mitigation models.
Abstract:Explainability of machine learning models is mandatory when researchers introduce these commonly believed black boxes to real-world tasks, especially high-stakes ones. In this paper, we build a machine learning system to automatically generate explanations of happened events from history by \gls{ca} based on the \acrfull{tpp}. Specifically, we propose a new task called \acrfull{ehd}. This task requires a model to distill as few events as possible from observed history. The target is that the event distribution conditioned on left events predicts the observed future noticeably worse. We then regard distilled events as the explanation for the future. To efficiently solve \acrshort{ehd}, we rewrite the task into a \gls{01ip} and directly estimate the solution to the program by a model called \acrfull{model}. This work fills the gap between our task and existing works, which only spot the difference between factual and counterfactual worlds after applying a predefined modification to the environment. Experiment results on Retweet and StackOverflow datasets prove that \acrshort{model} significantly outperforms other \acrshort{ehd} baselines and can reveal the rationale underpinning real-world processes.
Abstract:In the marked temporal point processes (MTPP), a core problem is to parameterize the conditional joint PDF (probability distribution function) $p^*(m,t)$ for inter-event time $t$ and mark $m$, conditioned on the history. The majority of existing studies predefine intensity functions. Their utility is challenged by specifying the intensity function's proper form, which is critical to balance expressiveness and processing efficiency. Recently, there are studies moving away from predefining the intensity function -- one models $p^*(t)$ and $p^*(m)$ separately, while the other focuses on temporal point processes (TPPs), which do not consider marks. This study aims to develop high-fidelity $p^*(m,t)$ for discrete events where the event marks are either categorical or numeric in a multi-dimensional continuous space. We propose a solution framework IFIB (\underline{I}ntensity-\underline{f}ree \underline{I}ntegral-\underline{b}ased process) that models conditional joint PDF $p^*(m,t)$ directly without intensity functions. It remarkably simplifies the process to compel the essential mathematical restrictions. We show the desired properties of IFIB and the superior experimental results of IFIB on real-world and synthetic datasets. The code is available at \url{https://github.com/StepinSilence/IFIB}.
Abstract:Dental template and parametric dental models are important tools for various applications in digital dentistry. However, constructing an unbiased dental template and accurate parametric dental models remains a challenging task due to the complex anatomical and morphological dental structures and also low volume ratio of the teeth. In this study, we develop an unbiased dental template by constructing an accurate dental atlas from CBCT images with guidance of teeth segmentation. First, to address the challenges, we propose to enhance the CBCT images and their segmentation images, including image cropping, image masking and segmentation intensity reassigning. Then, we further use the segmentation images to perform co-registration with the CBCT images to generate an accurate dental atlas, from which an unbiased dental template can be generated. By leveraging the unbiased dental template, we construct parametric dental models by estimating point-to-point correspondences between the dental models and employing Principal Component Analysis to determine shape subspaces of the parametric dental models. A total of 159 CBCT images of real subjects are collected to perform the constructions. Experimental results demonstrate effectiveness of our proposed method in constructing unbiased dental template and parametric dental model. The developed dental template and parametric dental models are available at https://github.com/Marvin0724/Teeth_template.
Abstract:Representation learning in recent years has been addressed with self-supervised learning methods. The input data is augmented into two distorted views and an encoder learns the representations that are invariant to distortions -- cross-view prediction. Augmentation is one of the key components in cross-view self-supervised learning frameworks to learn visual representations. This paper presents ExAgt, a novel method to include expert knowledge for augmenting traffic scenarios, to improve the learnt representations without any human annotation. The expert-guided augmentations are generated in an automated fashion based on the infrastructure, the interactions between the EGO and the traffic participants and an ideal sensor model. The ExAgt method is applied in two state-of-the-art cross-view prediction methods and the representations learnt are tested in downstream tasks like classification and clustering. Results show that the ExAgt method improves representation learning compared to using only standard augmentations and it provides a better representation space stability. The code is available at https://github.com/lab176344/ExAgt.
Abstract:We propose a novel software service recommendation model to help users find their suitable repositories in GitHub. Our model first designs a novel context-induced repository graph embedding method to leverage rich contextual information of repositories to alleviate the difficulties caused by the data sparsity issue. It then leverages sequence information of user-repository interactions for the first time in the software service recommendation field. Specifically, a deep-learning based sequential recommendation technique is adopted to capture the dynamics of user preferences. Comprehensive experiments have been conducted on a large dataset collected from GitHub against a list of existing methods. The results illustrate the superiority of our method in various aspects.
Abstract:Federated learning is a distributed learning paradigm which seeks to preserve the privacy of each participating node's data. However, federated learning is vulnerable to attacks, specifically to our interest, model integrity attacks. In this paper, we propose a novel method for malicious node detection called MANDERA. By transferring the original message matrix into a ranking matrix whose column shows the relative rankings of all local nodes along different parameter dimensions, our approach seeks to distinguish the malicious nodes from the benign ones with high efficiency based on key characteristics of the rank domain. We have proved, under mild conditions, that MANDERA is guaranteed to detect all malicious nodes under typical Byzantine attacks with no prior knowledge or history about the participating nodes. The effectiveness of the proposed approach is further confirmed by experiments on two classic datasets, CIFAR-10 and MNIST. Compared to the state-of-art methods in the literature for defending Byzantine attacks, MANDERA is unique in its way to identify the malicious nodes by ranking and its robustness to effectively defense a wide range of attacks.