What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Jul 02, 2025
Abstract:As AI integrates in various types of human writing, calls for transparency around AI assistance are growing. However, if transparency operates on uneven ground and certain identity groups bear a heavier cost for being honest, then the burden of openness becomes asymmetrical. This study investigates how AI disclosure statement affects perceptions of writing quality, and whether these effects vary by the author's race and gender. Through a large-scale controlled experiment, both human raters (n = 1,970) and LLM raters (n = 2,520) evaluated a single human-written news article while disclosure statements and author demographics were systematically varied. This approach reflects how both human and algorithmic decisions now influence access to opportunities (e.g., hiring, promotion) and social recognition (e.g., content recommendation algorithms). We find that both human and LLM raters consistently penalize disclosed AI use. However, only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present. But these advantages disappear when AI assistance is revealed. These findings illuminate the complex relationships between AI disclosure and author identity, highlighting disparities between machine and human evaluation patterns.
* Presented at CHIWORK 2025 Workshop on Generative AI Disclosure,
Ownership, and Accountability in Co-Creative Domains
Via

Jul 02, 2025
Abstract:Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation(FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models. Our codes are publicly available.
* 10 pages. arXiv admin note: substantial text overlap with
arXiv:2409.07500; text overlap with arXiv:2212.05399 by other authors
Via

Jul 02, 2025
Abstract:Graph federated recommendation systems offer a privacy-preserving alternative to traditional centralized recommendation architectures, which often raise concerns about data security. While federated learning enables personalized recommendations without exposing raw user data, existing aggregation methods overlook the unique properties of user embeddings in this setting. Indeed, traditional aggregation methods fail to account for their complexity and the critical role of user similarity in recommendation effectiveness. Moreover, evolving user interactions require adaptive aggregation while preserving the influence of high-relevance anchor users (the primary users before expansion in graph-based frameworks). To address these limitations, we introduce Dist-FedAvg, a novel distance-based aggregation method designed to enhance personalization and aggregation efficiency in graph federated learning. Our method assigns higher aggregation weights to users with similar embeddings, while ensuring that anchor users retain significant influence in local updates. Empirical evaluations on multiple datasets demonstrate that Dist-FedAvg consistently outperforms baseline aggregation techniques, improving recommendation accuracy while maintaining seamless integration into existing federated learning frameworks.
* 17 pages, 5 figures
Via

Jul 01, 2025
Abstract:There is growing interest in explainable recommender systems that provide recommendations along with explanations for the reasoning behind them. When evaluating recommender systems, most studies focus on overall recommendation performance. Only a few assess the quality of the explanations. Explanation quality is often evaluated through user studies that subjectively gather users' opinions on representative explanatory factors that shape end-users' perspective towards the results, not about the explanation contents itself. We aim to fill this gap by developing an objective metric to evaluate Veracity: the information quality of explanations. Specifically, we decompose Veracity into two dimensions: Fidelity and Attunement. Fidelity refers to whether the explanation includes accurate information about the recommended item. Attunement evaluates whether the explanation reflects the target user's preferences. By applying signal detection theory, we first determine decision outcomes for each dimension and then combine them to calculate a sensitivity, which serves as the final Veracity value. To assess the effectiveness of the proposed metric, we set up four cases with varying levels of information quality to validate whether our metric can accurately capture differences in quality. The results provided meaningful insights into the effectiveness of our proposed metric.
* Accepted to IEEE CAI 2025
Via

Jul 01, 2025
Abstract:Social media platforms serve as central hubs for content dissemination, opinion expression, and public engagement across diverse modalities. Accurately predicting the popularity of social media videos enables valuable applications in content recommendation, trend detection, and audience engagement. In this paper, we present Multimodal Video Predictor (MVP), our winning solution to the Video Track of the SMP Challenge 2025. MVP constructs expressive post representations by integrating deep video features extracted from pretrained models with user metadata and contextual information. The framework applies systematic preprocessing techniques, including log-transformations and outlier removal, to improve model robustness. A gradient-boosted regression model is trained to capture complex patterns across modalities. Our approach ranked first in the official evaluation of the Video Track, demonstrating its effectiveness and reliability for multimodal video popularity prediction on social platforms. The source code is available at https://anonymous.4open.science/r/SMPDVideo.
Via

Jun 26, 2025
Abstract:Arabic dialect recognition presents a significant challenge in speech technology due to the linguistic diversity of Arabic and the scarcity of large annotated datasets, particularly for underrepresented dialects. This research investigates hybrid modeling strategies that integrate classical signal processing techniques with deep learning architectures to address this problem in low-resource scenarios. Two hybrid models were developed and evaluated: (1) Mel-Frequency Cepstral Coefficients (MFCC) combined with a Convolutional Neural Network (CNN), and (2) Discrete Wavelet Transform (DWT) features combined with a Recurrent Neural Network (RNN). The models were trained on a dialect-filtered subset of the Common Voice Arabic dataset, with dialect labels assigned based on speaker metadata. Experimental results demonstrate that the MFCC + CNN architecture achieved superior performance, with an accuracy of 91.2% and strong precision, recall, and F1-scores, significantly outperforming the Wavelet + RNN configuration, which achieved an accuracy of 66.5%. These findings highlight the effectiveness of leveraging spectral features with convolutional models for Arabic dialect recognition, especially when working with limited labeled data. The study also identifies limitations related to dataset size, potential regional overlaps in labeling, and model optimization, providing a roadmap for future research. Recommendations for further improvement include the adoption of larger annotated corpora, integration of self-supervised learning techniques, and exploration of advanced neural architectures such as Transformers. Overall, this research establishes a strong baseline for future developments in Arabic dialect recognition within resource-constrained environments.
Via

Jun 26, 2025
Abstract:We present a methodology to provide real-time and personalized product recommendations for large e-commerce platforms, specifically focusing on fashion retail. Our approach aims to achieve accurate and scalable recommendations with minimal response times, ensuring user satisfaction, leveraging Graph Neural Networks and parsimonious learning methodologies. Extensive experimentation with datasets from one of the largest e-commerce platforms demonstrates the effectiveness of our approach in forecasting purchase sequences and handling multi-interaction scenarios, achieving efficient personalized recommendations under real-world constraints.
* This paper has been accepted for publication at the International
Conference on Artificial Neural Networks (ICANN) 2025. The final
authenticated version will be available for purchase through the publisher's
website. The conference proceedings will be published by Springer in the
Lecture Notes in Computer Science (LNCS) series
Via

Jun 26, 2025
Abstract:Advancements in robotic capabilities for providing physical assistance, psychological support, and daily health management are making the deployment of intelligent healthcare robots in home environments increasingly feasible in the near future. However, challenges arise when the information provided by these robots contradicts users' memory, raising concerns about user trust and decision-making. This paper presents a study that examines how varying a robot's level of transparency and sociability influences user interpretation, decision-making and perceived trust when faced with conflicting information from a robot. In a 2 x 2 between-subjects online study, 176 participants watched videos of a Furhat robot acting as a family healthcare assistant and suggesting a fictional user to take medication at a different time from that remembered by the user. Results indicate that robot transparency influenced users' interpretation of information discrepancies: with a low transparency robot, the most frequent assumption was that the user had not correctly remembered the time, while with the high transparency robot, participants were more likely to attribute the discrepancy to external factors, such as a partner or another household member modifying the robot's information. Additionally, participants exhibited a tendency toward overtrust, often prioritizing the robot's recommendations over the user's memory, even when suspecting system malfunctions or third-party interference. These findings highlight the impact of transparency mechanisms in robotic systems, the complexity and importance associated with system access control for multi-user robots deployed in home environments, and the potential risks of users' over reliance on robots in sensitive domains such as healthcare.
* 8 pages
Via

Jun 26, 2025
Abstract:In real-world applications, users always interact with items in multiple aspects, such as through implicit binary feedback (e.g., clicks, dislikes, long views) and explicit feedback (e.g., comments, reviews). Modern recommendation systems (RecSys) learn user-item collaborative signals from these implicit feedback signals as a large-scale binary data-streaming, subsequently recommending other highly similar items based on users' personalized historical interactions. However, from this collaborative-connection perspective, the RecSys does not focus on the actual content of the items themselves but instead prioritizes higher-probability signals of behavioral co-occurrence among items. Consequently, under this binary learning paradigm, the RecSys struggles to understand why a user likes or dislikes certain items. To alleviate it, some works attempt to utilize the content-based reviews to capture the semantic knowledge to enhance recommender models. However, most of these methods focus on predicting the ratings of reviews, but do not provide a human-understandable explanation.
* Work in progress
Via

Jun 25, 2025
Abstract:Retrieval-Augmented Generation (RAG) systems are emerging as a key approach for grounding Large Language Models (LLMs) in external knowledge, addressing limitations in factual accuracy and contextual relevance. However, there is a lack of empirical studies that report on the development of RAG-based implementations grounded in real-world use cases, evaluated through general user involvement, and accompanied by systematic documentation of lessons learned. This paper presents five domain-specific RAG applications developed for real-world scenarios across governance, cybersecurity, agriculture, industrial research, and medical diagnostics. Each system incorporates multilingual OCR, semantic retrieval via vector embeddings, and domain-adapted LLMs, deployed through local servers or cloud APIs to meet distinct user needs. A web-based evaluation involving a total of 100 participants assessed the systems across six dimensions: (i) Ease of Use, (ii) Relevance, (iii) Transparency, (iv) Responsiveness, (v) Accuracy, and (vi) Likelihood of Recommendation. Based on user feedback and our development experience, we documented twelve key lessons learned, highlighting technical, operational, and ethical challenges affecting the reliability and usability of RAG systems in practice.
* Accepted as a full paper to the 51st Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2025). 9 pages, 4 figures. This
is the preprint version and not the final camera ready version
Via
