What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Sep 16, 2025
Abstract:The cold-start issue is the challenge when we talk about recommender systems, especially in the case when we do not have the past interaction data of new users or new items. Content-based features or hybrid solutions are common as conventional solutions, but they can only work in a sparse metadata environment with shallow patterns. In this paper, the efficient cold-start recommendation strategy is presented, which is based on the sub word-level representations by applying Byte Pair Encoding (BPE) tokenization and pre-trained Large Language Model (LLM) embedding in the initialization procedure. We obtain fine-grained token-level vectors that are aligned with the BPE vocabulary as opposed to using coarse-grained sentence embeddings. Together, these token embeddings can be used as dense semantic priors on unseen entities, making immediate recommendation performance possible without user-item interaction history. Our mechanism can be compared to collaborative filtering systems and tested over benchmark datasets with stringent cold-start assumptions. Experimental findings show that the given BPE-LLM method achieves higher Recall@k, NDCG@k, and Hit Rate measurements compared to the standard baseline and displays the same capability of sufficient computational performance. Furthermore, we demonstrate that using subword-aware embeddings yields better generalizability and is more interpretable, especially within a multilingual and sparse input setting. The practical application of token-level semantic initialization as a lightweight, but nevertheless effective extension to modern recommender systems in the zero-shot setting is indicated within this work.
Via

Sep 16, 2025
Abstract:As global warming soars, the need to assess and reduce the environmental impact of recommender systems is becoming increasingly urgent. Despite this, the recommender systems community hardly understands, addresses, and evaluates the environmental impact of their work. In this study, we examine the environmental impact of recommender systems research by reproducing typical experimental pipelines. Based on our results, we provide guidelines for researchers and practitioners on how to minimize the environmental footprint of their work and implement green recommender systems - recommender systems designed to minimize their energy consumption and carbon footprint. Our analysis covers 79 papers from the 2013 and 2023 ACM RecSys conferences, comparing traditional "good old-fashioned AI" models with modern deep learning models. We designed and reproduced representative experimental pipelines for both years, measuring energy consumption using a hardware energy meter and converting it into CO2 equivalents. Our results show that papers utilizing deep learning models emit approximately 42 times more CO2 equivalents than papers using traditional models. On average, a single deep learning-based paper generates 2,909 kilograms of CO2 equivalents - more than the carbon emissions of a person flying from New York City to Melbourne or the amount of CO2 sequestered by one tree over 260 years. This work underscores the urgent need for the recommender systems and wider machine learning communities to adopt green AI principles, balancing algorithmic advancements and environmental responsibility to build a sustainable future with AI-powered personalization.
* Just Accepted at ACM TORS. arXiv admin note: substantial text overlap
with arXiv:2408.08203
Via

Sep 16, 2025
Abstract:Pre-ranking plays a crucial role in large-scale recommender systems by significantly improving the efficiency and scalability within the constraints of providing high-quality candidate sets in real time. The two-tower model is widely used in pre-ranking systems due to a good balance between efficiency and effectiveness with decoupled architecture, which independently processes user and item inputs before calculating their interaction (e.g. dot product or similarity measure). However, this independence also leads to the lack of information interaction between the two towers, resulting in less effectiveness. In this paper, a novel architecture named learnable Fully Interacted Two-tower Model (FIT) is proposed, which enables rich information interactions while ensuring inference efficiency. FIT mainly consists of two parts: Meta Query Module (MQM) and Lightweight Similarity Scorer (LSS). Specifically, MQM introduces a learnable item meta matrix to achieve expressive early interaction between user and item features. Moreover, LSS is designed to further obtain effective late interaction between the user and item towers. Finally, experimental results on several public datasets show that our proposed FIT significantly outperforms the state-of-the-art baseline pre-ranking models.
* SIGIR2025
Via

Sep 16, 2025
Abstract:Despite significant medical advancements, cancer remains the second leading cause of death, with over 600,000 deaths per year in the US. One emerging field, pathway analysis, is promising but still relies on manually derived wet lab data, which is time-consuming to acquire. This work proposes an efficient, effective end-to-end framework for Artificial Intelligence (AI) based pathway analysis that predicts both cancer severity and mutation progression, thus recommending possible treatments. The proposed technique involves a novel combination of time-series machine learning models and pathway analysis. First, mutation sequences were isolated from The Cancer Genome Atlas (TCGA) Database. Then, a novel preprocessing algorithm was used to filter key mutations by mutation frequency. This data was fed into a Recurrent Neural Network (RNN) that predicted cancer severity. Then, the model probabilistically used the RNN predictions, information from the preprocessing algorithm, and multiple drug-target databases to predict future mutations and recommend possible treatments. This framework achieved robust results and Receiver Operating Characteristic (ROC) curves (a key statistical metric) with accuracies greater than 60%, similar to existing cancer diagnostics. In addition, preprocessing played an instrumental role in isolating important mutations, demonstrating that each cancer stage studied may contain on the order of a few-hundred key driver mutations, consistent with current research. Heatmaps based on predicted gene frequency were also generated, highlighting key mutations in each cancer. Overall, this work is the first to propose an efficient, cost-effective end-to-end framework for projecting cancer progression and providing possible treatments without relying on expensive, time-consuming wet lab work.
* 12 pages, 11 figures, work originally done in 2022/2023 and was
awarded as one of the Regeneron Science Talent Search Finalists in 2022
Via

Sep 15, 2025
Abstract:The rapid adoption of foundation models (e.g., large language models) has given rise to promptware, i.e., software built using natural language prompts. Effective management of prompts, such as organization and quality assurance, is essential yet challenging. In this study, we perform an empirical analysis of 24,800 open-source prompts from 92 GitHub repositories to investigate prompt management practices and quality attributes. Our findings reveal critical challenges such as considerable inconsistencies in prompt formatting, substantial internal and external prompt duplication, and frequent readability and spelling issues. Based on these findings, we provide actionable recommendations for developers to enhance the usability and maintainability of open-source prompts within the rapidly evolving promptware ecosystem.
Via

Sep 15, 2025
Abstract:The evaluation bottleneck in recommendation systems has become particularly acute with the rise of Generative AI, where traditional metrics fall short of capturing nuanced quality dimensions that matter in specialized domains like legal research. Can we trust Large Language Models to serve as reliable judges of their own kind? This paper investigates LLM-as-a-Judge as a principled approach to evaluating Retrieval-Augmented Generation systems in legal contexts, where the stakes of recommendation quality are exceptionally high. We tackle two fundamental questions that determine practical viability: which inter-rater reliability metrics best capture the alignment between LLM and human assessments, and how do we conduct statistically sound comparisons between competing systems? Through systematic experimentation, we discover that traditional agreement metrics like Krippendorff's alpha can be misleading in the skewed distributions typical of AI system evaluations. Instead, Gwet's AC2 and rank correlation coefficients emerge as more robust indicators for judge selection, while the Wilcoxon Signed-Rank Test with Benjamini-Hochberg corrections provides the statistical rigor needed for reliable system comparisons. Our findings suggest a path toward scalable, cost-effective evaluation that maintains the precision demanded by legal applications, transforming what was once a human-intensive bottleneck into an automated, yet statistically principled, evaluation framework.
* Accepted in EARL 25: The 2nd Workshop on Evaluating and Applying
Recommender Systems with Large Language Models at RecSys 2025
Via

Sep 15, 2025
Abstract:One of the goals of recommender systems research is to provide insights and methods that can be used by practitioners to build real-world systems that deliver high-quality recommendations to actual people grounded in their genuine interests and needs. We report on our experience trying to apply the news recommendation literature to build POPROX, a live platform for news recommendation research, and reflect on the extent to which the current state of research supports system-building efforts. Our experience highlights several unexpected challenges encountered in building personalization features that are commonly found in products from news aggregators and publishers, and shows how those difficulties are connected to surprising gaps in the literature. Finally, we offer a set of lessons learned from building a live system with a persistent user base and highlight opportunities to make future news recommendation research more applicable and impactful in practice.
Via

Sep 15, 2025
Abstract:Generative paradigm, especially powered by Large Language Models (LLMs), has emerged as a new solution to the next point-of-interest (POI) recommendation. Pioneering studies usually adopt a two-stage pipeline, starting with a tokenizer converting POIs into discrete identifiers that can be processed by LLMs, followed by POI behavior prediction tasks to instruction-tune LLM for next POI recommendation. Despite of remarkable progress, they still face two limitations: (1) existing tokenizers struggle to encode heterogeneous signals in the recommendation data, suffering from information loss issue, and (2) previous instruction-tuning tasks only focus on users' POI visit behavior while ignore other behavior types, resulting in insufficient understanding of mobility. To address these limitations, we propose KGTB (Knowledge Graph Tokenization for Behavior-aware generative next POI recommendation). Specifically, KGTB organizes the recommendation data in a knowledge graph (KG) format, of which the structure can seamlessly preserve the heterogeneous information. Then, a KG-based tokenizer is developed to quantize each node into an individual structural ID. This process is supervised by the KG's structure, thus reducing the loss of heterogeneous information. Using generated IDs, KGTB proposes multi-behavior learning that introduces multiple behavior-specific prediction tasks for LLM fine-tuning, e.g., POI, category, and region visit behaviors. Learning on these behavior tasks provides LLMs with comprehensive insights on the target POI visit behavior. Experiments on four real-world city datasets demonstrate the superior performance of KGTB.
Via

Sep 11, 2025
Abstract:Social connection is a vital part of learning, yet online course environments present barriers to the organic formation of social groups. SAMI offers one solution by facilitating student connections, but its effectiveness is constrained by an incomplete Theory of Mind, limiting its ability to create an effective mental model of a student. One facet of this is its inability to intuit personality, which may influence the relevance of its recommendations. To explore this, we propose a personality detection model utilizing GPTs zero-shot capability to infer Big-Five personality traits from forum introduction posts, often encouraged in online courses. We benchmark its performance against established models, demonstrating its efficacy in this task. Furthermore, we integrate this model into SAMIs entity-based matchmaking system, enabling personality-informed social recommendations. Initial integration suggests personality traits can complement existing matching factors, though additional evaluation is required to determine their full impact on student engagement and match quality.
Via

Sep 11, 2025
Abstract:Semantic Textual Relatedness (STR) captures nuanced relationships between texts that extend beyond superficial lexical similarity. In this study, we investigate STR in the context of job title matching - a key challenge in resume recommendation systems, where overlapping terms are often limited or misleading. We introduce a self-supervised hybrid architecture that combines dense sentence embeddings with domain-specific Knowledge Graphs (KGs) to improve both semantic alignment and explainability. Unlike previous work that evaluated models on aggregate performance, our approach emphasizes data stratification by partitioning the STR score continuum into distinct regions: low, medium, and high semantic relatedness. This stratified evaluation enables a fine-grained analysis of model performance across semantically meaningful subspaces. We evaluate several embedding models, both with and without KG integration via graph neural networks. The results show that fine-tuned SBERT models augmented with KGs produce consistent improvements in the high-STR region, where the RMSE is reduced by 25% over strong baselines. Our findings highlight not only the benefits of combining KGs with text embeddings, but also the importance of regional performance analysis in understanding model behavior. This granular approach reveals strengths and weaknesses hidden by global metrics, and supports more targeted model selection for use in Human Resources (HR) systems and applications where fairness, explainability, and contextual matching are essential.
Via
