Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Recommendation": models, code, and papers

Recommending with Recommendations

Dec 02, 2021
Naveen Durvasula, Franklyn Wang, Scott Duke Kominers

Recommendation systems are a key modern application of machine learning, but they have the downside that they often draw upon sensitive user information in making their predictions. We show how to address this deficiency by basing a service's recommendation engine upon recommendations from other existing services, which contain no sensitive information by nature. Specifically, we introduce a contextual multi-armed bandit recommendation framework where the agent has access to recommendations for other services. In our setting, the user's (potentially sensitive) information belongs to a high-dimensional latent space, and the ideal recommendations for the source and target tasks (which are non-sensitive) are given by unknown linear transformations of the user information. So long as the tasks rely on similar segments of the user information, we can decompose the target recommendation problem into systematic components that can be derived from the source recommendations, and idiosyncratic components that are user-specific and cannot be derived from the source, but have significantly lower dimensionality. We propose an explore-then-refine approach to learning and utilizing this decomposition; then using ideas from perturbation theory and statistical concentration of measure, we prove our algorithm achieves regret comparable to a strong skyline that has full knowledge of the source and target transformations. We also consider a generalization of our algorithm to a model with many simultaneous targets and no source. Our methods obtain superior empirical results on synthetic benchmarks.

* 22 pages, 2 figures 
  

Is News Recommendation a Sequential Recommendation Task?

Aug 26, 2021
Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang

News recommendation is often modeled as a sequential recommendation task, which assumes that there are rich short-term dependencies over historical clicked news. However, in news recommendation scenarios users usually have strong preferences on the temporal diversity of news information and may not tend to click similar news successively, which is very different from many sequential recommendation scenarios such as e-commerce recommendation. In this paper, we study whether news recommendation can be regarded as a standard sequential recommendation problem. Through extensive experiments on two real-world datasets, we find that modeling news recommendation as a sequential recommendation problem is suboptimal. To handle this challenge, we further propose a temporal diversity-aware news recommendation method that can promote candidate news that are diverse from recently clicked news, which can help predict future clicks more accurately. Experiments show that our approach can consistently improve various news recommendation methods.

  

The Deconfounded Recommender: A Causal Inference Approach to Recommendation

Aug 20, 2018
Yixin Wang, Dawen Liang, Laurent Charlin, David M. Blei

The goal of a recommender system is to show its users items that they will like. In forming its prediction, the recommender system tries to answer: "what would the rating be if we 'forced' the user to watch the movie?" This is a question about an intervention in the world, a causal question, and so traditional recommender systems are doing causal inference from observational data. This paper develops a causal inference approach to recommendation. Traditional recommenders are likely biased by unobserved confounders, variables that affect both the "treatment assignments" (which movies the users watch) and the "outcomes" (how they rate them). We develop the deconfounded recommender, a strategy to leverage classical recommendation models for causal predictions. The deconfounded recommender uses Poisson factorization on which movies users watched to infer latent confounders in the data; it then augments common recommendation models to correct for potential confounding bias. The deconfounded recommender improves recommendation and it enjoys stable performance against interventions on test sets.

* 14 pages, 3 figures 
  

Can We Model News Recommendation as Sequential Recommendation?

Aug 20, 2021
Chuhan Wu, Fangzhao Wu, Tao Qi, Yongfeng Huang

News recommendation is often modeled as a sequential recommendation task, which assumes that there are rich short-term dependencies over historical clicked news. However, in news recommendation scenarios users usually have strong preferences on the temporal diversity of news information and may not tend to click similar news successively, which is very different from many sequential recommendation scenarios such as e-commerce recommendation. In this paper, we study whether news recommendation can be regarded as a standard sequential recommendation problem. Through extensive experiments on two real-world datasets, we find that modeling news recommendation as a sequential recommendation problem is suboptimal. To handle this challenge, we further propose a temporal diversity-aware news recommendation method that can promote candidate news that are diverse from recently clicked news, which can help predict future clicks more accurately. Experiments show that our approach can consistently improve various news recommendation methods.

  

A Hybrid Recommender System for Recommending Smartphones to Prospective Customers

May 26, 2021
Pratik K. Biswas, Songlin Liu

Recommender Systems are a subclass of machine learning systems that employ sophisticated information filtering strategies to reduce the search time and suggest the most relevant items to any particular user. Hybrid recommender systems combine multiple recommendation strategies in different ways to benefit from their complementary advantages. Some hybrid recommender systems have combined collaborative filtering and content-based approaches to build systems that are more robust. In this paper, we propose a hybrid recommender system, which combines Alternative Least Squares (ALS) based collaborative filtering with deep learning to enhance recommendation performance as well as overcome the limitations associated with the collaborative filtering approach, especially concerning its cold start problem. In essence, we use the outputs from ALS (collaborative filtering) to influence the recommendations from a Deep Neural Network (DNN), which combines characteristic, contextual, structural and sequential information, in a big data processing framework. We have conducted several experiments in testing the efficacy of the proposed hybrid architecture in recommending smartphones to prospective customers and compared its performance with other open-source recommenders. The results have shown that the proposed system has outperformed several existing hybrid recommender systems.

* Journal Paper 
  

Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting

Jul 01, 2020
Longbing Cao

While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and services. A critical reason for such bad recommendations lies in the intrinsic assumption that recommended users and items are independent and identically distributed (IID) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-IID nature and characteristics of recommendation are discussed, followed by the non-IID theoretical framework in order to build a deep and comprehensive understanding of the intrinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-IID recommendation research triggers the paradigm shift from IID to non-IID recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.

* Engineering, 2: 212-224, 2016 
  

Private Recommender Systems: How Can Users Build Their Own Fair Recommender Systems without Log Data?

May 26, 2021
Ryoma Sato

Fairness is an important property in data-mining applications, including recommender systems. In this work, we investigate a case where users of a recommender system need (or want) to be fair to a protected group of items. For example, in a job market, the user is the recruiter, an item is the job seeker, and the protected attribute is gender or race. Even if recruiters want to use a fair talent recommender system, the platform may not provide a fair recommender system, or recruiters may not be able to ascertain whether the recommender system's algorithm is fair. In this case, recruiters cannot utilize the recommender system, or they may become unfair to job seekers. In this work, we propose methods to enable the users to build their own fair recommender systems. Our methods can generate fair recommendations even when the platform does not (or cannot) provide fair recommender systems. The key challenge is that a user does not have access to the log data of other users or the latent representations of items. This restriction prohibits us from adopting existing methods, which are designed for platforms. The main idea is that a user has access to unfair recommendations provided by the platform. Our methods leverage the outputs of an unfair recommender system to construct a new fair recommender system. We empirically validate that our proposed method improves fairness substantially without harming much performance of the original unfair system.

  

A Survey on Neural Recommendation: From Collaborative Filtering to Content and Context Enriched Recommendation

Apr 27, 2021
Le Wu, Xiangnan He, Xiang Wang, Kun Zhang, Meng Wang

Influenced by the stunning success of deep learning in computer vision and language understanding, research in recommendation has shifted to inventing new recommender models based on neural networks. In recent years, we have witnessed significant progress in developing neural recommender models, which generalize and surpass traditional recommender models owing to the strong representation power of neural networks. In this survey paper, we conduct a systematic review on neural recommender models, aiming to summarize the field to facilitate future progress. Distinct from existing surveys that categorize existing methods based on the taxonomy of deep learning techniques, we instead summarize the field from the perspective of recommendation modeling, which could be more instructive to researchers and practitioners working on recommender systems. Specifically, we divide the work into three types based on the data they used for recommendation modeling: 1) collaborative filtering models, which leverage the key source of user-item interaction data; 2) content enriched models, which additionally utilize the side information associated with users and items, like user profile and item knowledge graph; and 3) context enriched models, which account for the contextual information associated with an interaction, such as time, location, and the past interactions. After reviewing representative works for each type, we finally discuss some promising directions in this field, including benchmarking recommender systems, graph reasoning based recommendation models, and explainable and fair recommendations for social good.

* In submission 
  

Applying the Affective Aware Pseudo Association Method to Enhance the Top-N Recommendations Distribution to Users in Group Emotion Recommender Systems

Feb 08, 2021
John Kalung Leung, Igor Griva, William G. Kennedy

Recommender Systems are a subclass of information retrieval systems, or more succinctly, a class of information filtering systems that seeks to predict how close is the match of the user's preference to a recommended item. A common approach for making recommendations for a user group is to extend Personalized Recommender Systems' capability. This approach gives the impression that group recommendations are retrofits of the Personalized Recommender Systems. Moreover, such an approach not taken the dynamics of group emotion and individual emotion into the consideration in making top_N recommendations. Recommending items to a group of two or more users has certainly raised unique challenges in group behaviors that influence group decision-making that researchers only partially understand. This study applies the Affective Aware Pseudo Association Method in studying group formation and dynamics in group decision-making. The method shows its adaptability to group's moods change when making recommendations.

* 19 pages, 9 tables 
  

Collective Mobile Sequential Recommendation: A Recommender System for Multiple Taxicabs

Jun 22, 2019
Tongwen Wu, Zizhen Zhang, Yanzhi Li, Jiahai Wang

Mobile sequential recommendation was originally designed to find a promising route for a single taxicab. Directly applying it for multiple taxicabs may cause an excessive overlap of recommended routes. The multi-taxicab recommendation problem is challenging and has been less studied. In this paper, we first formalize a collective mobile sequential recommendation problem based on a classic mathematical model, which characterizes time-varying influence among competing taxicabs. Next, we propose a new evaluation metric for a collection of taxicab routes aimed to minimize the sum of potential travel time. We then develop an efficient algorithm to calculate the metric and design a greedy recommendation method to approximate the solution. Finally, numerical experiments show the superiority of our methods. In trace-driven simulation, the set of routes recommended by our method significantly outperforms those obtained by conventional methods.

  
1
2
3
4
5
6
7
>>