Abstract:While many algorithmic extensions to Deep Q-Networks (DQN) have been proposed, there remains limited understanding of how different improvements interact. In particular, multi-step and ensemble style extensions have shown promise in reducing overestimation bias, thereby improving sample efficiency and algorithmic stability. In this paper, we introduce a novel algorithm called Ensemble Elastic Step DQN (EEDQN), which unifies ensembles with elastic step updates to stabilise algorithmic performance. EEDQN is designed to address two major challenges in deep reinforcement learning: overestimation bias and sample efficiency. We evaluated EEDQN against standard and ensemble DQN variants across the MinAtar benchmark, a set of environments that emphasise behavioral learning while reducing representational complexity. Our results show that EEDQN achieves consistently robust performance across all tested environments, outperforming baseline DQN methods and matching or exceeding state-of-the-art ensemble DQNs in final returns on most of the MinAtar environments. These findings highlight the potential of systematically combining algorithmic improvements and provide evidence that ensemble and multi-step methods, when carefully integrated, can yield substantial gains.
Abstract:Training large neural networks through gradient-based optimization requires navigating high-dimensional loss landscapes, which often exhibit pathological geometry, leading to undesirable training dynamics. In particular, poor generalization frequently results from convergence to sharp minima that are highly sensitive to input perturbations, causing the model to overfit the training data while failing to generalize to unseen examples. Furthermore, these optimization procedures typically display strong dependence on the fine structure of the loss landscape, leading to unstable training dynamics, due to the fractal-like nature of the loss surface. In this work, we propose an alternative optimizer that simultaneously reduces this dependence, and avoids sharp minima, thereby improving generalization. This is achieved by simulating the motion of the center of a ball rolling on the loss landscape. The degree to which our optimizer departs from the standard gradient descent is controlled by a hyperparameter, representing the radius of the ball. Changing this hyperparameter allows for probing the loss landscape at different scales, making it a valuable tool for understanding its geometry.
Abstract:Large Language Models (LLMs) represent a major step toward artificial general intelligence, significantly advancing our ability to interact with technology. While LLMs perform well on Natural Language Processing tasks -- such as translation, generation, code writing, and summarization -- questions remain about their output similarity, variability, and ethical implications. For instance, how similar are texts generated by the same model? How does this compare across different models? And which models best uphold ethical standards? To investigate, we used 5{,}000 prompts spanning diverse tasks like generation, explanation, and rewriting. This resulted in approximately 3 million texts from 12 LLMs, including proprietary and open-source systems from OpenAI, Google, Microsoft, Meta, and Mistral. Key findings include: (1) outputs from the same LLM are more similar to each other than to human-written texts; (2) models like WizardLM-2-8x22b generate highly similar outputs, while GPT-4 produces more varied responses; (3) LLM writing styles differ significantly, with Llama 3 and Mistral showing higher similarity, and GPT-4 standing out for distinctiveness; (4) differences in vocabulary and tone underscore the linguistic uniqueness of LLM-generated content; (5) some LLMs demonstrate greater gender balance and reduced bias. These results offer new insights into the behavior and diversity of LLM outputs, helping guide future development and ethical evaluation.
Abstract:Video event detection has become an essential component of sports analytics, enabling automated identification of key moments and enhancing performance analysis, viewer engagement, and broadcast efficiency. Recent advancements in deep learning, particularly Convolutional Neural Networks (CNNs) and Transformers, have significantly improved accuracy and efficiency in Temporal Action Localization (TAL), Action Spotting (AS), and Precise Event Spotting (PES). This survey provides a comprehensive overview of these three key tasks, emphasizing their differences, applications, and the evolution of methodological approaches. We thoroughly review and categorize existing datasets and evaluation metrics specifically tailored for sports contexts, highlighting the strengths and limitations of each. Furthermore, we analyze state-of-the-art techniques, including multi-modal approaches that integrate audio and visual information, methods utilizing self-supervised learning and knowledge distillation, and approaches aimed at generalizing across multiple sports. Finally, we discuss critical open challenges and outline promising research directions toward developing more generalized, efficient, and robust event detection frameworks applicable to diverse sports. This survey serves as a foundation for future research on efficient, generalizable, and multi-modal sports event detection.
Abstract:Missing data is a pervasive challenge spanning diverse data types, including tabular, sensor data, time-series, images and so on. Its origins are multifaceted, resulting in various missing mechanisms. Prior research in this field has predominantly revolved around the assumption of the Missing Completely At Random (MCAR) mechanism. However, Missing At Random (MAR) and Missing Not At Random (MNAR) mechanisms, though equally prevalent, have often remained underexplored despite their significant influence. This PhD project presents a comprehensive research agenda designed to investigate the implications of diverse missing data mechanisms. The principal aim is to devise robust methodologies capable of effectively handling missing data while accommodating the unique characteristics of MCAR, MAR, and MNAR mechanisms. By addressing these gaps, this research contributes to an enriched understanding of the challenges posed by missing data across various industries and data modalities. It seeks to provide practical solutions that enable the effective management of missing data, empowering researchers and practitioners to leverage incomplete datasets confidently.
Abstract:Recommendation systems are now an integral part of our daily lives. We rely on them for tasks such as discovering new movies, finding friends on social media, and connecting job seekers with relevant opportunities. Given their vital role, we must ensure these recommendations are free from societal stereotypes. Therefore, evaluating and addressing such biases in recommendation systems is crucial. Previous work evaluating the fairness of recommended items fails to capture certain nuances as they mainly focus on comparing performance metrics for different sensitive groups. In this paper, we introduce a set of comprehensive metrics for quantifying gender bias in recommendations. Specifically, we show the importance of evaluating fairness on a more granular level, which can be achieved using our metrics to capture gender bias using categories of recommended items like genres for movies. Furthermore, we show that employing a category-aware fairness metric as a regularization term along with the main recommendation loss during training can help effectively minimize bias in the models' output. We experiment on three real-world datasets, using five baseline models alongside two popular fairness-aware models, to show the effectiveness of our metrics in evaluating gender bias. Our metrics help provide an enhanced insight into bias in recommended items compared to previous metrics. Additionally, our results demonstrate how incorporating our regularization term significantly improves the fairness in recommendations for different categories without substantial degradation in overall recommendation performance.
Abstract:Visual Question Answering (VQA) is an evolving research field aimed at enabling machines to answer questions about visual content by integrating image and language processing techniques such as feature extraction, object detection, text embedding, natural language understanding, and language generation. With the growth of multimodal data research, VQA has gained significant attention due to its broad applications, including interactive educational tools, medical image diagnosis, customer service, entertainment, and social media captioning. Additionally, VQA plays a vital role in assisting visually impaired individuals by generating descriptive content from images. This survey introduces a taxonomy of VQA architectures, categorizing them based on design choices and key components to facilitate comparative analysis and evaluation. We review major VQA approaches, focusing on deep learning-based methods, and explore the emerging field of Large Visual Language Models (LVLMs) that have demonstrated success in multimodal tasks like VQA. The paper further examines available datasets and evaluation metrics essential for measuring VQA system performance, followed by an exploration of real-world VQA applications. Finally, we highlight ongoing challenges and future directions in VQA research, presenting open questions and potential areas for further development. This survey serves as a comprehensive resource for researchers and practitioners interested in the latest advancements and future
Abstract:Visual Question Answering (VQA) has emerged as a promising area of research to develop AI-based systems for enabling interactive and immersive learning. Numerous VQA datasets have been introduced to facilitate various tasks, such as answering questions or identifying unanswerable ones. However, most of these datasets are constructed using real-world images, leaving the performance of existing models on cartoon images largely unexplored. Hence, in this paper, we present "SimpsonsVQA", a novel dataset for VQA derived from The Simpsons TV show, designed to promote inquiry-based learning. Our dataset is specifically designed to address not only the traditional VQA task but also to identify irrelevant questions related to images, as well as the reverse scenario where a user provides an answer to a question that the system must evaluate (e.g., as correct, incorrect, or ambiguous). It aims to cater to various visual applications, harnessing the visual content of "The Simpsons" to create engaging and informative interactive systems. SimpsonsVQA contains approximately 23K images, 166K QA pairs, and 500K judgments (https://simpsonsvqa.org). Our experiments show that current large vision-language models like ChatGPT4o underperform in zero-shot settings across all three tasks, highlighting the dataset's value for improving model performance on cartoon images. We anticipate that SimpsonsVQA will inspire further research, innovation, and advancements in inquiry-based learning VQA.
Abstract:Data-driven Artificial Intelligence (AI) systems trained using Machine Learning (ML) are shaping an ever-increasing (in size and importance) portion of our lives, including, but not limited to, recommendation systems, autonomous driving technologies, healthcare diagnostics, financial services, and personalized marketing. On the one hand, the outsized influence of these systems imposes a high standard of quality, particularly in the data used to train them. On the other hand, establishing and maintaining standards of Data Quality (DQ) becomes more challenging due to the proliferation of Edge Computing and Internet of Things devices, along with their increasing adoption for training and deploying ML models. The nature of the edge environment -- characterized by limited resources, decentralized data storage, and processing -- exacerbates data-related issues, making them more frequent, severe, and difficult to detect and mitigate. From these observations, it follows that DQ research for edge ML is a critical and urgent exploration track for the safety and robust usefulness of present and future AI systems. Despite this fact, DQ research for edge ML is still in its infancy. The literature on this subject remains fragmented and scattered across different research communities, with no comprehensive survey to date. Hence, this paper aims to fill this gap by providing a global view of the existing literature from multiple disciplines that can be grouped under the umbrella of DQ for edge ML. Specifically, we present a tentative definition of data quality in Edge computing, which we use to establish a set of DQ dimensions. We explore each dimension in detail, including existing solutions for mitigation.
Abstract:In this era of advanced manufacturing, it's now more crucial than ever to diagnose machine faults as early as possible to guarantee their safe and efficient operation. With the massive surge in industrial big data and advancement in sensing and computational technologies, data-driven Machinery Fault Diagnosis (MFD) solutions based on machine/deep learning approaches have been used ubiquitously in manufacturing. Timely and accurately identifying faulty machine signals is vital in industrial applications for which many relevant solutions have been proposed and are reviewed in many articles. Despite the availability of numerous solutions and reviews on MFD, existing works often lack several aspects. Most of the available literature has limited applicability in a wide range of manufacturing settings due to their concentration on a particular type of equipment or method of analysis. Additionally, discussions regarding the challenges associated with implementing data-driven approaches, such as dealing with noisy data, selecting appropriate features, and adapting models to accommodate new or unforeseen faults, are often superficial or completely overlooked. Thus, this survey provides a comprehensive review of the articles using different types of machine learning approaches for the detection and diagnosis of various types of machinery faults, highlights their strengths and limitations, provides a review of the methods used for condition-based analyses, comprehensively discusses the available machinery fault datasets, introduces future researchers to the possible challenges they have to encounter while using these approaches for MFD and recommends the probable solutions to mitigate those problems. The future research prospects are also pointed out for a better understanding of the field. We believe this article will help researchers and contribute to the further development of the field.