Abstract:Open-weight bio-foundation models present a dual-use dilemma. While holding great promise for accelerating scientific research and drug development, they could also enable bad actors to develop more deadly bioweapons. To mitigate the risk posed by these models, current approaches focus on filtering biohazardous data during pre-training. However, the effectiveness of such an approach remains unclear, particularly against determined actors who might fine-tune these models for malicious use. To address this gap, we propose \eval, a framework to evaluate the robustness of procedures that are intended to reduce the dual-use capabilities of bio-foundation models. \eval assesses models' virus understanding through three lenses, including sequence modeling, mutational effects prediction, and virulence prediction. Our results show that current filtering practices may not be particularly effective: Excluded knowledge can be rapidly recovered in some cases via fine-tuning, and exhibits broader generalizability in sequence modeling. Furthermore, dual-use signals may already reside in the pretrained representations, and can be elicited via simple linear probing. These findings highlight the challenges of data filtering as a standalone procedure, underscoring the need for further research into robust safety and security strategies for open-weight bio-foundation models.
Abstract:Companies spend large amounts of money on public relations campaigns to project a positive brand image. However, sometimes there is a mismatch between what they say and what they do. Oil & gas companies, for example, are accused of "greenwashing" with imagery of climate-friendly initiatives. Understanding the framing, and changes in framing, at scale can help better understand the goals and nature of public relations campaigns. To address this, we introduce a benchmark dataset of expert-annotated video ads obtained from Facebook and YouTube. The dataset provides annotations for 13 framing types for more than 50 companies or advocacy groups across 20 countries. Our dataset is especially designed for the evaluation of vision-language models (VLMs), distinguishing it from past text-only framing datasets. Baseline experiments show some promising results, while leaving room for improvement for future work: GPT-4.1 can detect environmental messages with 79% F1 score, while our best model only achieves 46% F1 score on identifying framing around green innovation. We also identify challenges that VLMs must address, such as implicit framing, handling videos of various lengths, or implicit cultural backgrounds. Our dataset contributes to research in multimodal analysis of strategic communication in the energy sector.



Abstract:As AI integrates in various types of human writing, calls for transparency around AI assistance are growing. However, if transparency operates on uneven ground and certain identity groups bear a heavier cost for being honest, then the burden of openness becomes asymmetrical. This study investigates how AI disclosure statement affects perceptions of writing quality, and whether these effects vary by the author's race and gender. Through a large-scale controlled experiment, both human raters (n = 1,970) and LLM raters (n = 2,520) evaluated a single human-written news article while disclosure statements and author demographics were systematically varied. This approach reflects how both human and algorithmic decisions now influence access to opportunities (e.g., hiring, promotion) and social recognition (e.g., content recommendation algorithms). We find that both human and LLM raters consistently penalize disclosed AI use. However, only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present. But these advantages disappear when AI assistance is revealed. These findings illuminate the complex relationships between AI disclosure and author identity, highlighting disparities between machine and human evaluation patterns.
Abstract:Recent reports claim that large language models (LLMs) now outperform elite humans in competitive programming. Drawing on knowledge from a group of medalists in international algorithmic contests, we revisit this claim, examining how LLMs differ from human experts and where limitations still remain. We introduce LiveCodeBench Pro, a benchmark composed of problems from Codeforces, ICPC, and IOI that are continuously updated to reduce the likelihood of data contamination. A team of Olympiad medalists annotates every problem for algorithmic categories and conducts a line-by-line analysis of failed model-generated submissions. Using this new data and benchmark, we find that frontier models still have significant limitations: without external tools, the best model achieves only 53% pass@1 on medium-difficulty problems and 0% on hard problems, domains where expert humans still excel. We also find that LLMs succeed at implementation-heavy problems but struggle with nuanced algorithmic reasoning and complex case analysis, often generating confidently incorrect justifications. High performance appears largely driven by implementation precision and tool augmentation, not superior reasoning. LiveCodeBench Pro thus highlights the significant gap to human grandmaster levels, while offering fine-grained diagnostics to steer future improvements in code-centric LLM reasoning.




Abstract:Foundation models are increasingly becoming better autonomous programmers, raising the prospect that they could also automate dangerous offensive cyber-operations. Current frontier model audits probe the cybersecurity risks of such agents, but most fail to account for the degrees of freedom available to adversaries in the real world. In particular, with strong verifiers and financial incentives, agents for offensive cybersecurity are amenable to iterative improvement by would-be adversaries. We argue that assessments should take into account an expanded threat model in the context of cybersecurity, emphasizing the varying degrees of freedom that an adversary may possess in stateful and non-stateful environments within a fixed compute budget. We show that even with a relatively small compute budget (8 H100 GPU Hours in our study), adversaries can improve an agent's cybersecurity capability on InterCode CTF by more than 40\% relative to the baseline -- without any external assistance. These results highlight the need to evaluate agents' cybersecurity risk in a dynamic manner, painting a more representative picture of risk.
Abstract:As the legal community increasingly examines the use of large language models (LLMs) for various legal applications, legal AI developers have turned to retrieval-augmented LLMs ("RAG" systems) to improve system performance and robustness. An obstacle to the development of specialized RAG systems is the lack of realistic legal RAG benchmarks which capture the complexity of both legal retrieval and downstream legal question-answering. To address this, we introduce two novel legal RAG benchmarks: Bar Exam QA and Housing Statute QA. Our tasks correspond to real-world legal research tasks, and were produced through annotation processes which resemble legal research. We describe the construction of these benchmarks and the performance of existing retriever pipelines. Our results suggest that legal RAG remains a challenging application, thus motivating future research.
Abstract:We are at a turning point for language models that accept audio input. The latest end-to-end audio language models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this position paper, we urge a closer examination of how these models are built and deployed. We argue that the principle of least privilege should guide decisions on whether to deploy cascaded or end-to-end models. Specifically, evaluations should assess (1) whether end-to-end modeling is necessary for a given application; and (2), the appropriate scope of information access. Finally, We highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
Abstract:Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead.
Abstract:We employ model pruning to examine how LLMs conceptualize racial biases, and whether a generalizable mitigation strategy for such biases appears feasible. Our analysis yields several novel insights. We find that pruning can be an effective method to reduce bias without significantly increasing anomalous model behavior. Neuron-based pruning strategies generally yield better results than approaches pruning entire attention heads. However, our results also show that the effectiveness of either approach quickly deteriorates as pruning strategies become more generalized. For instance, a model that is trained on removing racial biases in the context of financial decision-making poorly generalizes to biases in commercial transactions. Overall, our analysis suggests that racial biases are only partially represented as a general concept within language models. The other part of these biases is highly context-specific, suggesting that generalizable mitigation strategies may be of limited effectiveness. Our findings have important implications for legal frameworks surrounding AI. In particular, they suggest that an effective mitigation strategy should include the allocation of legal responsibility on those that deploy models in a specific use case.

Abstract:Artificial intelligence (AI) model creators commonly attach restrictive terms of use to both their models and their outputs. These terms typically prohibit activities ranging from creating competing AI models to spreading disinformation. Often taken at face value, these terms are positioned by companies as key enforceable tools for preventing misuse, particularly in policy dialogs. But are these terms truly meaningful? There are myriad examples where these broad terms are regularly and repeatedly violated. Yet except for some account suspensions on platforms, no model creator has actually tried to enforce these terms with monetary penalties or injunctive relief. This is likely for good reason: we think that the legal enforceability of these licenses is questionable. This Article systematically assesses of the enforceability of AI model terms of use and offers three contributions. First, we pinpoint a key problem: the artifacts that they protect, namely model weights and model outputs, are largely not copyrightable, making it unclear whether there is even anything to be licensed. Second, we examine the problems this creates for other enforcement. Recent doctrinal trends in copyright preemption may further undermine state-law claims, while other legal frameworks like the DMCA and CFAA offer limited recourse. Anti-competitive provisions likely fare even worse than responsible use provisions. Third, we provide recommendations to policymakers. There are compelling reasons for many provisions to be unenforceable: they chill good faith research, constrain competition, and create quasi-copyright ownership where none should exist. There are, of course, downsides: model creators have fewer tools to prevent harmful misuse. But we think the better approach is for statutory provisions, not private fiat, to distinguish between good and bad uses of AI, restricting the latter.