Abstract:Diffusion models have become widely popular for automated floorplan generation, producing highly realistic layouts conditioned on user-defined constraints. However, optimizing for perceptual metrics such as the Fréchet Inception Distance (FID) causes limited design diversity. To address this, we propose the Diversity Score (DS), a metric that quantifies layout diversity under fixed constraints. Moreover, to improve geometric consistency, we introduce a Boundary Cross-Attention (BCA) module that enables conditioning on building boundaries. Our experiments show that BCA significantly improves boundary adherence, while prolonged training drives diversity collapse undiagnosed by FID, revealing a critical trade-off between realism and diversity. Out-Of-Distribution evaluations further demonstrate the models' reliance on dataset priors, emphasizing the need for generative systems that explicitly balance fidelity, diversity, and generalization in architectural design tasks.
Abstract:We present a methodology to provide real-time and personalized product recommendations for large e-commerce platforms, specifically focusing on fashion retail. Our approach aims to achieve accurate and scalable recommendations with minimal response times, ensuring user satisfaction, leveraging Graph Neural Networks and parsimonious learning methodologies. Extensive experimentation with datasets from one of the largest e-commerce platforms demonstrates the effectiveness of our approach in forecasting purchase sequences and handling multi-interaction scenarios, achieving efficient personalized recommendations under real-world constraints.