Music generation is the task of generating music or music-like sounds from a model or algorithm.
Automatic transcription of acoustic guitar fingerpicking performances remains a challenging task due to the scarcity of labeled training data and legal constraints connected with musical recordings. This work investigates a procedural data generation pipeline as an alternative to real audio recordings for training transcription models. Our approach synthesizes training data through four stages: knowledge-based fingerpicking tablature composition, MIDI performance rendering, physical modeling using an extended Karplus-Strong algorithm, and audio augmentation including reverb and distortion. We train and evaluate a CRNN-based note-tracking model on both real and synthetic datasets, demonstrating that procedural data can be used to achieve reasonable note-tracking results. Finetuning with a small amount of real data further enhances transcription accuracy, improving over models trained exclusively on real recordings. These results highlight the potential of procedurally generated audio for data-scarce music information retrieval tasks.
LLM-powered code generation has the potential to revolutionize creative coding endeavors, such as live-coding, by enabling users to focus on structural motifs over syntactic details. In such domains, when prompting an LLM, users may benefit from considering multiple varied code candidates to better realize their musical intentions. Code generation models, however, struggle to present unique and diverse code candidates, with no direct insight into the code's audio output. To better establish a relationship between code candidates and produced audio, we investigate the topology of the mapping between code and audio embedding spaces. We find that code and audio embeddings do not exhibit a simple linear relationship, but supplement this with a constructed predictive model that shows an embedding alignment map could be learned. Supplementing the aim for musically diverse output, we present a model that given code predicts output audio embedding, constructing a code-audio embedding alignment map.



The recent surge in State Space Models (SSMs), particularly the emergence of Mamba, has established them as strong alternatives or complementary modules to Transformers across diverse domains. In this work, we aim to explore the potential of Mamba-based architectures for text-to-music generation. We adopt discrete tokens of Residual Vector Quantization (RVQ) as the modeling representation and empirically find that a single-layer codebook can capture semantic information in music. Motivated by this observation, we focus on modeling a single-codebook representation and adapt SiMBA, originally designed as a Mamba-based encoder, to function as a decoder for sequence modeling. We compare its performance against a standard Transformer-based decoder. Our results suggest that, under limited-resource settings, SiMBA achieves much faster convergence and generates outputs closer to the ground truth. This demonstrates the promise of SSMs for efficient and expressive text-to-music generation. We put audio examples on Github.
Recent advances in audio-based generative language models have accelerated AI-driven lyric-to-song generation. However, these models frequently suffer from content hallucination, producing outputs misaligned with the input lyrics and undermining musical coherence. Current supervised fine-tuning (SFT) approaches, limited by passive label-fitting, exhibit constrained self-improvement and poor hallucination mitigation. To address this core challenge, we propose a novel reinforcement learning (RL) framework leveraging preference optimization for hallucination control. Our key contributions include: (1) Developing a robust hallucination preference dataset constructed via phoneme error rate (PER) computation and rule-based filtering to capture alignment with human expectations; (2) Implementing and evaluating three distinct preference optimization strategies within the RL framework: Direct Preference Optimization (DPO), Proximal Policy Optimization (PPO), and Group Relative Policy Optimization (GRPO). DPO operates off-policy to enhance positive token likelihood, achieving a significant 7.4% PER reduction. PPO and GRPO employ an on-policy approach, training a PER-based reward model to iteratively optimize sequences via reward maximization and KL-regularization, yielding PER reductions of 4.9% and 4.7%, respectively. Comprehensive objective and subjective evaluations confirm that our methods effectively suppress hallucinations while preserving musical quality. Crucially, this work presents a systematic, RL-based solution to hallucination control in lyric-to-song generation. The framework's transferability also unlocks potential for music style adherence and musicality enhancement, opening new avenues for future generative song research.
This paper investigates GrooveTransformer, a real-time rhythm generation system, through the postphenomenological framework of Variational Cross-Examination (VCE). By reflecting on its deployment across three distinct artistic contexts, we identify three stabilities: an autonomous drum accompaniment generator, a rhythmic control voltage sequencer in Eurorack format, and a rhythm driver for a harmonic accompaniment system. The versatility of its applications was not an explicit goal from the outset of the project. Thus, we ask: how did this multistability emerge? Through VCE, we identify three key contributors to its emergence: the affordances of system invariants, the interdisciplinary collaboration, and the situated nature of its development. We conclude by reflecting on the viability of VCE as a descriptive and analytical method for Digital Musical Instrument (DMI) design, emphasizing its value in uncovering how technologies mediate, co-shape, and are co-shaped by users and contexts.
Evaluating audio generation systems, including text-to-music (TTM), text-to-speech (TTS), and text-to-audio (TTA), remains challenging due to the subjective and multi-dimensional nature of human perception. Existing methods treat mean opinion score (MOS) prediction as a regression problem, but standard regression losses overlook the relativity of perceptual judgments. To address this limitation, we introduce QAMRO, a novel Quality-aware Adaptive Margin Ranking Optimization framework that seamlessly integrates regression objectives from different perspectives, aiming to highlight perceptual differences and prioritize accurate ratings. Our framework leverages pre-trained audio-text models such as CLAP and Audiobox-Aesthetics, and is trained exclusively on the official AudioMOS Challenge 2025 dataset. It demonstrates superior alignment with human evaluations across all dimensions, significantly outperforming robust baseline models.
In the era of generative AI, ensuring the privacy of music data presents unique challenges: unlike static artworks such as images, music data is inherently temporal and multimodal, and it is sampled, transformed, and remixed at an unprecedented scale. These characteristics make its core vector embeddings, i.e, the numerical representations of the music, highly susceptible to being learned, misused, or even stolen by models without accessing the original audio files. Traditional methods like copyright licensing and digital watermarking offer limited protection for these abstract mathematical representations, thus necessitating a stronger, e.g., cryptographic, approach to safeguarding the embeddings themselves. Standard encryption schemes, such as AES, render data unintelligible for computation, making such searches impossible. While Fully Homomorphic Encryption (FHE) provides a plausible solution by allowing arbitrary computations on ciphertexts, its substantial performance overhead remains impractical for large-scale vector similarity searches. Given this trade-off, we propose a more practical approach using Additive Homomorphic Encryption (AHE) for vector similarity search. The primary contributions of this paper are threefold: we analyze threat models unique to music information retrieval systems; we provide a theoretical analysis and propose an efficient AHE-based solution through inner products of music embeddings to deliver privacy-preserving similarity search; and finally, we demonstrate the efficiency and practicality of the proposed approach through empirical evaluation and comparison to FHE schemes on real-world MP3 files.
Objective assessment of source-separation systems still mismatches subjective human perception, especially when leakage and self-distortion interact. We introduce the Perceptual Separation (PS) and Perceptual Match (PM), the first pair of measures that functionally isolate these two factors. Our intrusive method begins with generating a bank of fundamental distortions for each reference waveform signal in the mixture. Distortions, references, and their respective system outputs from all sources are then independently encoded by a pre-trained self-supervised learning model. These representations are aggregated and projected onto a manifold via diffusion maps, which aligns Euclidean distances on the manifold with dissimilarities of the encoded waveforms. On this manifold, the PM measures the Mahalanobis distance from each output to its attributed cluster that consists of its reference and distortions embeddings, capturing self-distortion. The PS accounts for the Mahalanobis distance of the output to the attributed and to the closest non-attributed clusters, quantifying leakage. Both measures are differentiable and granular, operating at a resolution as low as 50 frames per second. We further derive, for both measures, deterministic error radius and non-asymptotic, high-probability confidence intervals (CIs). Experiments on English, Spanish, and music mixtures show that the PS and PM nearly always achieve the highest linear correlation coefficients with human mean-opinion scores than 14 competitors, reaching as high as 86.36% for speech and 87.21% for music. We observe, at worst, an error radius of 1.39% and a probabilistic 95% CI of 12.21% for these coefficients, which improves reliable and informed evaluation. Using mutual information, the measures complement each other most as their values decrease, suggesting they are jointly more informative as system performance degrades.
Lyrics-to-Song (LS2) generation models promise end-to-end music synthesis from text, yet their vulnerability to training data memorization remains underexplored. We introduce Adversarial PhoneTic Prompting (APT), a novel attack where lyrics are semantically altered while preserving their acoustic structure through homophonic substitutions (e.g., Eminem's famous "mom's spaghetti" $\rightarrow$ "Bob's confetti"). Despite these distortions, we uncover a powerful form of sub-lexical memorization: models like SUNO and YuE regenerate outputs strikingly similar to known training content, achieving high similarity across audio-domain metrics, including CLAP, AudioJudge, and CoverID. This vulnerability persists across multiple languages and genres. More surprisingly, we discover that phoneme-altered lyrics alone can trigger visual memorization in text-to-video models. When prompted with phonetically modified lyrics from Lose Yourself, Veo 3 reconstructs visual elements from the original music video -- including character appearance and scene composition -- despite no visual cues in the prompt. We term this phenomenon phonetic-to-visual regurgitation. Together, these findings expose a critical vulnerability in transcript-conditioned multimodal generation: phonetic prompting alone can unlock memorized audiovisual content, raising urgent questions about copyright, safety, and content provenance in modern generative systems. Example generations are available on our demo page (jrohsc.github.io/music_attack/).
Recently, the information content (IC) of predictions from a Generative Infinite-Vocabulary Transformer (GIVT) has been used to model musical expectancy and surprisal in audio. We investigate the effectiveness of such modelling using IC calculated with autoregressive diffusion models (ADMs). We empirically show that IC estimates of models based on two different diffusion ordinary differential equations (ODEs) describe diverse data better, in terms of negative log-likelihood, than a GIVT. We evaluate diffusion model IC's effectiveness in capturing surprisal aspects by examining two tasks: (1) capturing monophonic pitch surprisal, and (2) detecting segment boundaries in multi-track audio. In both tasks, the diffusion models match or exceed the performance of a GIVT. We hypothesize that the surprisal estimated at different diffusion process noise levels corresponds to the surprisal of music and audio features present at different audio granularities. Testing our hypothesis, we find that, for appropriate noise levels, the studied musical surprisal tasks' results improve. Code is provided on github.com/SonyCSLParis/audioic.