What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
May 19, 2025
Abstract:Music exists in various modalities, such as score images, symbolic scores, MIDI, and audio. Translations between each modality are established as core tasks of music information retrieval, such as automatic music transcription (audio-to-MIDI) and optical music recognition (score image to symbolic score). However, most past work on multimodal translation trains specialized models on individual translation tasks. In this paper, we propose a unified approach, where we train a general-purpose model on many translation tasks simultaneously. Two key factors make this unified approach viable: a new large-scale dataset and the tokenization of each modality. Firstly, we propose a new dataset that consists of more than 1,300 hours of paired audio-score image data collected from YouTube videos, which is an order of magnitude larger than any existing music modal translation datasets. Secondly, our unified tokenization framework discretizes score images, audio, MIDI, and MusicXML into a sequence of tokens, enabling a single encoder-decoder Transformer to tackle multiple cross-modal translation as one coherent sequence-to-sequence task. Experimental results confirm that our unified multitask model improves upon single-task baselines in several key areas, notably reducing the symbol error rate for optical music recognition from 24.58% to a state-of-the-art 13.67%, while similarly substantial improvements are observed across the other translation tasks. Notably, our approach achieves the first successful score-image-conditioned audio generation, marking a significant breakthrough in cross-modal music generation.
* Submitted to IEEE Transactions on Audio, Speech and Language
Processing (TASLPRO)
Via

May 14, 2025
Abstract:Human annotations of mood in music are essential for music generation and recommender systems. However, existing datasets predominantly focus on Western songs with mood terms derived from English, which may limit generalizability across diverse linguistic and cultural backgrounds. To address this, we introduce `GlobalMood', a novel cross-cultural benchmark dataset comprising 1,180 songs sampled from 59 countries, with large-scale annotations collected from 2,519 individuals across five culturally and linguistically distinct locations: U.S., France, Mexico, S. Korea, and Egypt. Rather than imposing predefined mood categories, we implement a bottom-up, participant-driven approach to organically elicit culturally specific music-related mood terms. We then recruit another pool of human participants to collect 988,925 ratings for these culture-specific descriptors. Our analysis confirms the presence of a valence-arousal structure shared across cultures, yet also reveals significant divergences in how certain mood terms, despite being dictionary equivalents, are perceived cross-culturally. State-of-the-art multimodal models benefit substantially from fine-tuning on our cross-culturally balanced dataset, as evidenced by improved alignment with human evaluations - particularly in non-English contexts. More broadly, our findings inform the ongoing debate on the universality versus cultural specificity of emotional descriptors, and our methodology can contribute to other multimodal and cross-lingual research.
Via

May 14, 2025
Abstract:In recent years, generative adversarial networks (GANs) have made significant progress in generating audio sequences. However, these models typically rely on bandwidth-limited mel-spectrograms, which constrain the resolution of generated audio sequences, and lead to mode collapse during conditional generation. To address this issue, we propose Deformable Periodic Network based GAN (DPN-GAN), a novel GAN architecture that incorporates a kernel-based periodic ReLU activation function to induce periodic bias in audio generation. This innovative approach enhances the model's ability to capture and reproduce intricate audio patterns. In particular, our proposed model features a DPN module for multi-resolution generation utilizing deformable convolution operations, allowing for adaptive receptive fields that improve the quality and fidelity of the synthetic audio. Additionally, we enhance the discriminator network using deformable convolution to better distinguish between real and generated samples, further refining the audio quality. We trained two versions of the model: DPN-GAN small (38.67M parameters) and DPN-GAN large (124M parameters). For evaluation, we use five different datasets, covering both speech synthesis and music generation tasks, to demonstrate the efficiency of the DPN-GAN. The experimental results demonstrate that DPN-GAN delivers superior performance on both out-of-distribution and noisy data, showcasing its robustness and adaptability. Trained across various datasets, DPN-GAN outperforms state-of-the-art GAN architectures on standard evaluation metrics, and exhibits increased robustness in synthesized audio.
* IEEE Access, vol. 13, pp. 69324-69340, 2025
Via

May 29, 2025
Abstract:Recent advances in interactive technologies have highlighted the prominence of audio signals for semantic encoding. This paper explores a new task, where audio signals are used as conditioning inputs to generate motions that align with the semantics of the audio. Unlike text-based interactions, audio provides a more natural and intuitive communication method. However, existing methods typically focus on matching motions with music or speech rhythms, which often results in a weak connection between the semantics of the audio and generated motions. We propose an end-to-end framework using a masked generative transformer, enhanced by a memory-retrieval attention module to handle sparse and lengthy audio inputs. Additionally, we enrich existing datasets by converting descriptions into conversational style and generating corresponding audio with varied speaker identities. Experiments demonstrate the effectiveness and efficiency of the proposed framework, demonstrating that audio instructions can convey semantics similar to text while providing more practical and user-friendly interactions.
* Graphical Models,Volume 139,2025,101268,ISSN 1524-0703,
Via

Apr 30, 2025
Abstract:Evaluating generative models remains a fundamental challenge, particularly when the goal is to reflect human preferences. In this paper, we use music generation as a case study to investigate the gap between automatic evaluation metrics and human preferences. We conduct comparative experiments across five state-of-the-art music generation approaches, assessing both perceptual quality and distributional similarity to human-composed music. Specifically, we evaluate synthesis music from various perceptual dimensions and examine reference-based metrics such as Mauve Audio Divergence (MAD) and Kernel Audio Distance (KAD). Our findings reveal significant inconsistencies across the different metrics, highlighting the limitation of the current evaluation practice. To support further research, we release a benchmark dataset comprising samples from multiple models. This study provides a broader perspective on the alignment of human preference in generative modeling, advocating for more human-centered evaluation strategies across domains.
Via

May 20, 2025
Abstract:The text generation paradigm for audio tasks has opened new possibilities for unified audio understanding. However, existing models face significant challenges in achieving a comprehensive understanding across diverse audio types, such as speech, general audio events, and music. Furthermore, their exclusive reliance on cross-entropy loss for alignment often falls short, as it treats all tokens equally and fails to account for redundant audio features, leading to weaker cross-modal alignment. To deal with the above challenges, this paper introduces U-SAM, an advanced audio language model that integrates specialized encoders for speech, audio, and music with a pre-trained large language model (LLM). U-SAM employs a Mixture of Experts (MoE) projector for task-aware feature fusion, dynamically routing and integrating the domain-specific encoder outputs. Additionally, U-SAM incorporates a Semantic-Aware Contrastive Loss Module, which explicitly identifies redundant audio features under language supervision and rectifies their semantic and spectral representations to enhance cross-modal alignment. Extensive experiments demonstrate that U-SAM consistently outperforms both specialized models and existing audio language models across multiple benchmarks. Moreover, it exhibits emergent capabilities on unseen tasks, showcasing its generalization potential. Code is available (https://github.com/Honee-W/U-SAM/).
* Accepted to Interspeech 2025
Via

May 27, 2025
Abstract:In music production, manipulating audio effects (Fx) parameters through natural language has the potential to reduce technical barriers for non-experts. We present LLM2Fx, a framework leveraging Large Language Models (LLMs) to predict Fx parameters directly from textual descriptions without requiring task-specific training or fine-tuning. Our approach address the text-to-effect parameter prediction (Text2Fx) task by mapping natural language descriptions to the corresponding Fx parameters for equalization and reverberation. We demonstrate that LLMs can generate Fx parameters in a zero-shot manner that elucidates the relationship between timbre semantics and audio effects in music production. To enhance performance, we introduce three types of in-context examples: audio Digital Signal Processing (DSP) features, DSP function code, and few-shot examples. Our results demonstrate that LLM-based Fx parameter generation outperforms previous optimization approaches, offering competitive performance in translating natural language descriptions to appropriate Fx settings. Furthermore, LLMs can serve as text-driven interfaces for audio production, paving the way for more intuitive and accessible music production tools.
* Submitted to WASPAA 2025
Via

Jun 12, 2025
Abstract:Reduced social connectedness increasingly poses a threat to mental health, life expectancy, and general well-being. Generative AI (GAI) technologies, such as large language models (LLMs) and image generation tools, are increasingly integrated into applications aimed at enhancing human social experiences. Despite their growing presence, little is known about how these technologies influence social interactions. This scoping review investigates how GAI-based applications are currently designed to facilitate social interaction, what forms of social engagement they target, and which design and evaluation methodologies designers use to create and evaluate them. Through an analysis of 30 studies published since 2020, we identify key trends in application domains including storytelling, socio-emotional skills training, reminiscence, collaborative learning, music making, and general conversation. We highlight the role of participatory and co-design approaches in fostering both effective technology use and social engagement, while also examining socio-ethical concerns such as cultural bias and accessibility. This review underscores the potential of GAI to support dynamic and personalized interactions, but calls for greater attention to equitable design practices and inclusive evaluation strategies.
* Preprint version of a manuscript submitted to ACM Transactions on
Computer-Human Interaction (TOCHI), under review. 39 pages, 4 figures
Via

Apr 18, 2025
Abstract:Music generation aims to create music segments that align with human aesthetics based on diverse conditional information. Despite advancements in generating music from specific textual descriptions (e.g., style, genre, instruments), the practical application is still hindered by ordinary users' limited expertise or time to write accurate prompts. To bridge this application gap, this paper introduces MusFlow, a novel multimodal music generation model using Conditional Flow Matching. We employ multiple Multi-Layer Perceptrons (MLPs) to align multimodal conditional information into the audio's CLAP embedding space. Conditional flow matching is trained to reconstruct the compressed Mel-spectrogram in the pretrained VAE latent space guided by aligned feature embedding. MusFlow can generate music from images, story texts, and music captions. To collect data for model training, inspired by multi-agent collaboration, we construct an intelligent data annotation workflow centered around a fine-tuned Qwen2-VL model. Using this workflow, we build a new multimodal music dataset, MMusSet, with each sample containing a quadruple of image, story text, music caption, and music piece. We conduct four sets of experiments: image-to-music, story-to-music, caption-to-music, and multimodal music generation. Experimental results demonstrate that MusFlow can generate high-quality music pieces whether the input conditions are unimodal or multimodal. We hope this work can advance the application of music generation in multimedia field, making music creation more accessible. Our generated samples, code and dataset are available at musflow.github.io.
Via

May 27, 2025
Abstract:We propose MelodySim, a melody-aware music similarity model and dataset for plagiarism detection. First, we introduce a novel method to construct a dataset with focus on melodic similarity. By augmenting Slakh2100; an existing MIDI dataset, we generate variations of each piece while preserving the melody through modifications such as note splitting, arpeggiation, minor track dropout (excluding bass), and re-instrumentation. A user study confirms that positive pairs indeed contain similar melodies, with other musical tracks significantly changed. Second, we develop a segment-wise melodic-similarity detection model that uses a MERT encoder and applies a triplet neural network to capture melodic similarity. The resultant decision matrix highlights where plagiarism might occur. Our model achieves high accuracy on the MelodySim test set.
Via
