Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.




Simulators are indispensable for research in autonomous systems such as self-driving cars, autonomous robots and drones. Despite significant progress in various simulation aspects, such as graphical realism, an evident gap persists between the virtual and real-world environments. Since the ultimate goal is to deploy the autonomous systems in the real world, closing the sim2real gap is of utmost importance. In this paper, we employ a state-ofthe-art approach to enhance the photorealism of simulated data, aligning them with the visual characteristics of real-world datasets. Based on this, we developed CARLA2Real, an easy-to-use, publicly available tool (plug-in) for the widely used and open-source CARLA simulator. This tool enhances the output of CARLA in near realtime, achieving a frame rate of 13 FPS, translating it to the visual style and realism of real-world datasets such as Cityscapes, KITTI, and Mapillary Vistas. By employing the proposed tool, we generated synthetic datasets from both the simulator and the enhancement model outputs, including their corresponding ground truth annotations for tasks related to autonomous driving. Then, we performed a number of experiments to evaluate the impact of the proposed approach on feature extraction and semantic segmentation methods when trained on the enhanced synthetic data. The results demonstrate that the sim2real gap is significant and can indeed be reduced by the introduced approach.




Autonomous racing is gaining attention for its potential to advance autonomous vehicle technologies. Accurate race car dynamics modeling is essential for capturing and predicting future states like position, orientation, and velocity. However, accurately modeling complex subsystems such as tires and suspension poses significant challenges. In this paper, we introduce the Deep Kernel-based Multi-task Gaussian Process (DKMGP), which leverages the structure of a variational multi-task and multi-step Gaussian process model enhanced with deep kernel learning for vehicle dynamics modeling. Unlike existing single-step methods, DKMGP performs multi-step corrections with an adaptive correction horizon (ACH) algorithm that dynamically adjusts to varying driving conditions. To validate and evaluate the proposed DKMGP method, we compare the model performance with DKL-SKIP and a well-tuned single-track model, using high-speed dynamics data (exceeding 230kmph) collected from a full-scale Indy race car during the Indy Autonomous Challenge held at the Las Vegas Motor Speedway at CES 2024. The results demonstrate that DKMGP achieves upto 99% prediction accuracy compared to one-step DKL-SKIP, while improving real-time computational efficiency by 1752x. Our results show that DKMGP is a scalable and efficient solution for vehicle dynamics modeling making it suitable for high-speed autonomous racing control.
Vehicle make and model recognition (VMMR) is a crucial component of the Intelligent Transport System, garnering significant attention in recent years. VMMR has been widely utilized for detecting suspicious vehicles, monitoring urban traffic, and autonomous driving systems. The complexity of VMMR arises from the subtle visual distinctions among vehicle models and the wide variety of classes produced by manufacturers. Convolutional Neural Networks (CNNs), a prominent type of deep learning model, have been extensively employed in various computer vision tasks, including VMMR, yielding remarkable results. As VMMR is a fine-grained classification problem, it primarily faces inter-class similarity and intra-class variation challenges. In this study, we implement an attention module to address these challenges and enhance the model's focus on critical areas containing distinguishing features. This module, which does not increase the parameters of the original model, generates three-dimensional (3-D) attention weights to refine the feature map. Our proposed model integrates the attention module into two different locations within the middle section of a convolutional model, where the feature maps from these sections offer sufficient information about the input frames without being overly detailed or overly coarse. The performance of our proposed model, along with state-of-the-art (SOTA) convolutional and transformer-based models, was evaluated using the Stanford Cars dataset. Our proposed model achieved the highest accuracy, 90.69\%, among the compared models.




Considerable study has already been conducted regarding autonomous driving in modern era. An autonomous driving system must be extremely good at detecting objects surrounding the car to ensure safety. In this paper, classification, and estimation of an object's (pedestrian) position (concerning an ego 3D coordinate system) are studied and the distance between the ego vehicle and the object in the context of autonomous driving is measured. To classify the object, faster Region-based Convolution Neural Network (R-CNN) with inception v2 is utilized. First, a network is trained with customized dataset to estimate the reference position of objects as well as the distance from the vehicle. From camera calibration to computing the distance, cutting-edge technologies of computer vision algorithms in a series of processes are applied to generate a 3D reference point of the region of interest. The foremost step in this process is generating a disparity map using the concept of stereo vision.




Vehicle trajectory prediction is crucial for advancing autonomous driving and advanced driver assistance systems (ADAS). Although deep learning-based approaches - especially those utilizing transformer-based and generative models - have markedly improved prediction accuracy by capturing complex, non-linear patterns in vehicle dynamics and traffic interactions, they frequently overlook detailed car-following behaviors and the inter-vehicle interactions critical for real-world driving applications, particularly in fully autonomous or mixed traffic scenarios. To address the issue, this study introduces a scaled noise conditional diffusion model for car-following trajectory prediction, which integrates detailed inter-vehicular interactions and car-following dynamics into a generative framework, improving both the accuracy and plausibility of predicted trajectories. The model utilizes a novel pipeline to capture historical vehicle dynamics by scaling noise with encoded historical features within the diffusion process. Particularly, it employs a cross-attention-based transformer architecture to model intricate inter-vehicle dependencies, effectively guiding the denoising process and enhancing prediction accuracy. Experimental results on diverse real-world driving scenarios demonstrate the state-of-the-art performance and robustness of the proposed method.




A multiagent sequential decision problem has been seen in many critical applications including urban transportation, autonomous driving cars, military operations, etc. Its widely known solution, namely multiagent reinforcement learning, has evolved tremendously in recent years. Among them, the solution paradigm of modeling other agents attracts our interest, which is different from traditional value decomposition or communication mechanisms. It enables agents to understand and anticipate others' behaviors and facilitates their collaboration. Inspired by recent research on the legibility that allows agents to reveal their intentions through their behavior, we propose a multiagent active legibility framework to improve their performance. The legibility-oriented framework allows agents to conduct legible actions so as to help others optimise their behaviors. In addition, we design a series of problem domains that emulate a common scenario and best characterize the legibility in multiagent reinforcement learning. The experimental results demonstrate that the new framework is more efficient and costs less training time compared to several multiagent reinforcement learning algorithms.




This paper explores the application of deep reinforcement learning (RL) techniques in the domain of autonomous self-driving car racing. Motivated by the rise of AI-driven mobility and autonomous racing events, the project aims to develop an AI agent that efficiently drives a simulated car in the OpenAI Gymnasium CarRacing environment. We investigate various RL algorithms, including Deep Q-Network (DQN), Proximal Policy Optimization (PPO), and novel adaptations that incorporate transfer learning and recurrent neural networks (RNNs) for enhanced performance. The project demonstrates that while DQN provides a strong baseline for policy learning, integrating ResNet and LSTM models significantly improves the agent's ability to capture complex spatial and temporal dynamics. PPO, particularly in continuous action spaces, shows promising results for fine control, although challenges such as policy collapse remain. We compare the performance of these approaches and outline future research directions focused on improving computational efficiency and addressing model stability. Our findings contribute to the ongoing development of AI systems in autonomous driving and related control tasks.




As we move towards a mixed-traffic scenario of Autonomous vehicles (AVs) and Human-driven vehicles (HDVs), understanding the car-following behaviour is important to improve traffic efficiency and road safety. Using a real-world trajectory dataset, this study uses descriptive and statistical analysis to investigate the car-following behaviours of three vehicle pairs: HDV-AV, AV-HDV and HDV-HDV in mixed traffic. The ANOVA test showed that car-following behaviours across different vehicle pairs are statistically significant (p-value < 0.05). We also introduce a data-driven Knowledge Distillation Neural Network (KDNN) model for predicting car-following behaviour in terms of speed. The KDNN model demonstrates comparable predictive accuracy to its teacher network, a Long Short-Term Memory (LSTM) network, and outperforms both the standalone student network, a Multilayer Perceptron (MLP), and traditional physics-based models like the Gipps model. Notably, the KDNN model better prevents collisions, measured by minimum Time-to-Collision (TTC), and operates with lower computational power, making it ideal for AVs or driving simulators requiring efficient computing.




Perception is a key building block of autonomously acting vision systems such as autonomous vehicles. It is crucial that these systems are able to understand their surroundings in order to operate safely and robustly. Additionally, autonomous systems deployed in unconstrained real-world scenarios must be able of dealing with novel situations and object that have never been seen before. In this article, we tackle the problem of open-world panoptic segmentation, i.e., the task of discovering new semantic categories and new object instances at test time, while enforcing consistency among the categories that we incrementally discover. We propose Con2MAV, an approach for open-world panoptic segmentation that extends our previous work, ContMAV, which was developed for open-world semantic segmentation. Through extensive experiments across multiple datasets, we show that our model achieves state-of-the-art results on open-world segmentation tasks, while still performing competitively on the known categories. We will open-source our implementation upon acceptance. Additionally, we propose PANIC (Panoptic ANomalies In Context), a benchmark for evaluating open-world panoptic segmentation in autonomous driving scenarios. This dataset, recorded with a multi-modal sensor suite mounted on a car, provides high-quality, pixel-wise annotations of anomalous objects at both semantic and instance level. Our dataset contains 800 images, with more than 50 unknown classes, i.e., classes that do not appear in the training set, and 4000 object instances, making it an extremely challenging dataset for open-world segmentation tasks in the autonomous driving scenario. We provide competitions for multiple open-world tasks on a hidden test set. Our dataset and competitions are available at https://www.ipb.uni-bonn.de/data/panic.




The autonomous driving industry is rapidly advancing, with Vehicle-to-Vehicle (V2V) communication systems highlighting as a key component of enhanced road safety and traffic efficiency. This paper introduces a novel Real-time Vehicle-to-Vehicle Communication Based Network Cooperative Control System (VVCCS), designed to revolutionize macro-scope traffic planning and collision avoidance in autonomous driving. Implemented on Quanser Car (Qcar) hardware platform, our system integrates the distributed databases into individual autonomous vehicles and an optional central server. We also developed a comprehensive multi-modal perception system with multi-objective tracking and radar sensing. Through a demonstration within a physical crossroad environment, our system showcases its potential to be applied in congested and complex urban environments.