Articulated objects are central to interactive 3D applications, including embodied AI, robotics, and VR/AR, where functional part decomposition and kinematic motion are essential. Yet producing high-fidelity articulated assets remains difficult to scale because it requires reliable part decomposition and kinematic rigging. Existing approaches largely fall into two paradigms: optimization-based reconstruction or distillation, which can be accurate but often takes tens of minutes to hours per instance, and inference-time methods that rely on template or part retrieval, producing plausible results that may not match the specific structure and appearance in the input observation. We introduce a part-centric generative framework for articulated object creation that synthesizes part geometry, composition, and articulation under explicit part-aware conditioning. Our representation models an object as a set of movable parts, each encoded by latent tokens augmented with part identity and articulation cues. Conditioned on a single image, the model generates articulated 3D assets that preserve instance-level correspondence while maintaining valid part structure and motion. The resulting approach avoids per-instance optimization, enables fast feed-forward inference, and supports controllable assembly and articulation, which are important for embodied interaction. Experiments on common articulated categories (e.g., drawers and doors) show improved input consistency, part accuracy, and articulation plausibility over optimization-based and retrieval-driven baselines, while substantially reducing inference time.
Transferring visual style between images while preserving semantic correspondence between similar objects remains a central challenge in computer vision. While existing methods have made great strides, most of them operate at global level but overlook region-wise and even pixel-wise semantic correspondence. To address this, we propose CoCoDiff, a novel training-free and low-cost style transfer framework that leverages pretrained latent diffusion models to achieve fine-grained, semantically consistent stylization. We identify that correspondence cues within generative diffusion models are under-explored and that content consistency across semantically matched regions is often neglected. CoCoDiff introduces a pixel-wise semantic correspondence module that mines intermediate diffusion features to construct a dense alignment map between content and style images. Furthermore, a cycle-consistency module then enforces structural and perceptual alignment across iterations, yielding object and region level stylization that preserves geometry and detail. Despite requiring no additional training or supervision, CoCoDiff delivers state-of-the-art visual quality and strong quantitative results, outperforming methods that rely on extra training or annotations.
We present MeFEm, a vision model based on a modified Joint Embedding Predictive Architecture (JEPA) for biometric and medical analysis from facial images. Key modifications include an axial stripe masking strategy to focus learning on semantically relevant regions, a circular loss weighting scheme, and the probabilistic reassignment of the CLS token for high quality linear probing. Trained on a consolidated dataset of curated images, MeFEm outperforms strong baselines like FaRL and Franca on core anthropometric tasks despite using significantly less data. It also shows promising results on Body Mass Index (BMI) estimation, evaluated on a novel, consolidated closed-source dataset that addresses the domain bias prevalent in existing data. Model weights are available at https://huggingface.co/boretsyury/MeFEm , offering a strong baseline for future work in this domain.
We address fine-grained visual reasoning in multimodal large language models (MLLMs), where key evidence may reside in tiny objects, cluttered regions, or subtle markings that are lost under a single global image encoding. We introduce TikArt (Thinking Aperture), an aperture-guided agent that casts multi-step vision-language reasoning as a decision process over regions of interest. TikArt follows a Think-Aperture-Observe loop, alternating between language generation and two aperture actions: Zoom extracts rectangular crops, while Segment invokes SAM2 to obtain mask-based crops for irregular targets. After every action, the model must produce an explicit observation, turning local visual cues into persistent linguistic memory. Built on Qwen3-VL-8B, TikArt optimizes its reasoning policy with AGRPO, a GRPO-style reinforcement learning algorithm with a two-stage curriculum: it warms up segmentation actions and then jointly optimizes visual math, fine-grained VQA, and segmentation, using rewards that couple task success with purposeful aperture use. Experiments on V*, HR-Bench-4K/8K, MME-RealWorld-Lite, MMStar, RefCOCO, and ReasonSeg show consistent gains over the backbone and yield interpretable aperture trajectories for high-resolution reasoning.
Short Term object-interaction Anticipation consists in detecting the location of the next active objects, the noun and verb categories of the interaction, as well as the time to contact from the observation of egocentric video. This ability is fundamental for wearable assistants to understand user goals and provide timely assistance, or to enable human-robot interaction. In this work, we present a method to improve the performance of STA predictions. Our contributions are two-fold: 1 We propose STAformer and STAformer plus plus, two novel attention-based architectures integrating frame-guided temporal pooling, dual image-video attention, and multiscale feature fusion to support STA predictions from an image-input video pair; 2 We introduce two novel modules to ground STA predictions on human behavior by modeling affordances. First, we integrate an environment affordance model which acts as a persistent memory of interactions that can take place in a given physical scene. We explore how to integrate environment affordances via simple late fusion and with an approach which adaptively learns how to best fuse affordances with end-to-end predictions. Second, we predict interaction hotspots from the observation of hands and object trajectories, increasing confidence in STA predictions localized around the hotspot. Our results show significant improvements on Overall Top-5 mAP, with gain up to +23p.p on Ego4D and +31p.p on a novel set of curated EPIC-Kitchens STA labels. We released the code, annotations, and pre-extracted affordances on Ego4D and EPIC-Kitchens to encourage future research in this area.
Vision language models (VLMs) achieve strong performance on RGB imagery, but they do not generalize to thermal images. Thermal sensing plays a critical role in settings where visible light fails, including nighttime surveillance, search and rescue, autonomous driving, and medical screening. Unlike RGB imagery, thermal images encode physical temperature rather than color or texture, requiring perceptual and reasoning capabilities that existing RGB-centric benchmarks do not evaluate. We introduce ThermEval-B, a structured benchmark of approximately 55,000 thermal visual question answering pairs designed to assess the foundational primitives required for thermal vision language understanding. ThermEval-B integrates public datasets with our newly collected ThermEval-D, the first dataset to provide dense per-pixel temperature maps with semantic body-part annotations across diverse indoor and outdoor environments. Evaluating 25 open-source and closed-source VLMs, we find that models consistently fail at temperature-grounded reasoning, degrade under colormap transformations, and default to language priors or fixed responses, with only marginal gains from prompting or supervised fine-tuning. These results demonstrate that thermal understanding requires dedicated evaluation beyond RGB-centric assumptions, positioning ThermEval as a benchmark to drive progress in thermal vision language modeling.
We introduce VIGIL (Visual Inconsistency & Generative In-context Lucidity), the first benchmark dataset and framework providing a fine-grained categorization of hallucinations in the multimodal image recontextualization task for large multimodal models (LMMs). While existing research often treats hallucinations as a uniform issue, our work addresses a significant gap in multimodal evaluation by decomposing these errors into five categories: pasted object hallucinations, background hallucinations, object omission, positional & logical inconsistencies, and physical law violations. To address these complexities, we propose a multi-stage detection pipeline. Our architecture processes recontextualized images through a series of specialized steps targeting object-level fidelity, background consistency, and omission detection, leveraging a coordinated ensemble of open-source models, whose effectiveness is demonstrated through extensive experimental evaluations. Our approach enables a deeper understanding of where the models fail with an explanation; thus, we fill a gap in the field, as no prior methods offer such categorization and decomposition for this task. To promote transparency and further exploration, we openly release VIGIL, along with the detection pipeline and benchmark code, through our GitHub repository: https://github.com/mlubneuskaya/vigil and Data repository: https://huggingface.co/datasets/joannaww/VIGIL.
Image-based Virtual Try-On (VTON) concerns the synthesis of realistic person imagery through garment re-rendering under human pose and body constraints. In practice, however, existing approaches are typically optimized for specific data conditions, making their deployment reliant on retraining and limiting their generalization as a unified solution. We present OmniVTON++, a training-free VTON framework designed for universal applicability. It addresses the intertwined challenges of garment alignment, human structural coherence, and boundary continuity by coordinating Structured Garment Morphing for correspondence-driven garment adaptation, Principal Pose Guidance for step-wise structural regulation during diffusion sampling, and Continuous Boundary Stitching for boundary-aware refinement, forming a cohesive pipeline without task-specific retraining. Experimental results demonstrate that OmniVTON++ achieves state-of-the-art performance across diverse generalization settings, including cross-dataset and cross-garment-type evaluations, while reliably operating across scenarios and diffusion backbones within a single formulation. In addition to single-garment, single-human cases, the framework supports multi-garment, multi-human, and anime character virtual try-on, expanding the scope of virtual try-on applications. The source code will be released to the public.
Three-dimensional (3D) ultrasound promises various medical applications for abdominal, obstetrics, and cardiovascular imaging. However, ultrasound matrix arrays have extremely high element counts limiting their field of view (FOV). This work seeks to demonstrate an increased field-of-view using a reduced element count array design. The approach is to increase the element size and use advanced beamformers to maintain image quality. The delay and sum (DAS), Null Subtraction Imaging (NSI), directional coherence factor (DCF), and Minimum Variance (MV) beamformers were compared. K-wave simulations of the 3D point-spread functions (PSF) of NSI, DCF, and MV display reduced side lobes and narrowed main lobes compared to DAS. Experiments were conducted using a multiplexed 1024-element matrix array on a Verasonics 256 system. Elements were electronically coupled to imitate a larger pitch and element size. Then, a virtual large aperture was created by using a positioning system to collect data in sections with the matrix array. High-quality images were obtained using a coupling factor of two, doubling the FOV while maintaining the same element count in the virtual large aperture as the original matrix array. The NSI beamformer demonstrated the best resolution performance in simulations and on the large aperture, maintaining the same resolution as uncoupled DAS for coupling factors up to 4. Our results demonstrate how larger matrix arrays could be constructed with larger elements, with resolution maintained by advanced beamformers.
Reliable uncertainty estimates are crucial for deploying pretrained models; yet, many strong methods for quantifying uncertainty require retraining, Monte Carlo sampling, or expensive second-order computations and may alter a frozen backbone's predictions. To address this, we introduce Gaussian Process Activations (GAPA), a post-hoc method that shifts Bayesian modeling from weights to activations. GAPA replaces standard nonlinearities with Gaussian-process activations whose posterior mean exactly matches the original activation, preserving the backbone's point predictions by construction while providing closed-form epistemic variances in activation space. To scale to modern architectures, we use a sparse variational inducing-point approximation over cached training activations, combined with local k-nearest-neighbor subset conditioning, enabling deterministic single-pass uncertainty propagation without sampling, backpropagation, or second-order information. Across regression, classification, image segmentation, and language modeling, GAPA matches or outperforms strong post-hoc baselines in calibration and out-of-distribution detection while remaining efficient at test time.