Recent advances in instruction-based image editing have shown remarkable progress. However, existing methods remain limited to relatively simple editing operations, hindering real-world applications that require complex and compositional instructions. In this work, we address these limitations from the perspectives of architectural design, data, and evaluation protocols. Specifically, we identify two key challenges in current models: insufficient instruction compliance and background inconsistency. To this end, we propose MCIE-E1, a Multimodal Large Language Model-Driven Complex Instruction Image Editing method that integrates two key modules: a spatial-aware cross-attention module and a background-consistent cross-attention module. The former enhances instruction-following capability by explicitly aligning semantic instructions with spatial regions through spatial guidance during the denoising process, while the latter preserves features in unedited regions to maintain background consistency. To enable effective training, we construct a dedicated data pipeline to mitigate the scarcity of complex instruction-based image editing datasets, combining fine-grained automatic filtering via a powerful MLLM with rigorous human validation. Finally, to comprehensively evaluate complex instruction-based image editing, we introduce CIE-Bench, a new benchmark with two new evaluation metrics. Experimental results on CIE-Bench demonstrate that MCIE-E1 consistently outperforms previous state-of-the-art methods in both quantitative and qualitative assessments, achieving a 23.96% improvement in instruction compliance.
We present a training-free, plug-and-play method, namely VFace, for high-quality face swapping in videos. It can be seamlessly integrated with image-based face swapping approaches built on diffusion models. First, we introduce a Frequency Spectrum Attention Interpolation technique to facilitate generation and intact key identity characteristics. Second, we achieve Target Structure Guidance via plug-and-play attention injection to better align the structural features from the target frame to the generation. Third, we present a Flow-Guided Attention Temporal Smoothening mechanism that enforces spatiotemporal coherence without modifying the underlying diffusion model to reduce temporal inconsistencies typically encountered in frame-wise generation. Our method requires no additional training or video-specific fine-tuning. Extensive experiments show that our method significantly enhances temporal consistency and visual fidelity, offering a practical and modular solution for video-based face swapping. Our code is available at https://github.com/Sanoojan/VFace.
Semi-supervised learning (SSL) has emerged as a critical paradigm for medical image segmentation, mitigating the immense cost of dense annotations. However, prevailing SSL frameworks are fundamentally "inward-looking", recycling information and biases solely from within the target dataset. This design triggers a vicious cycle of confirmation bias under class imbalance, leading to the catastrophic failure to recognize minority classes. To dismantle this systemic issue, we propose a paradigm shift to a multi-level "outward-looking" framework. Our primary innovation is Foundational Knowledge Distillation (FKD), which looks outward beyond the confines of medical imaging by introducing a pre-trained visual foundation model, DINOv3, as an unbiased external semantic teacher. Instead of trusting the student's biased high confidence, our method distills knowledge from DINOv3's robust understanding of high semantic uniqueness, providing a stable, cross-domain supervisory signal that anchors the learning of minority classes. To complement this core strategy, we further look outward within the data by proposing Progressive Imbalance-aware CutMix (PIC), which creates a dynamic curriculum that adaptively forces the model to focus on minority classes in both labeled and unlabeled subsets. This layered strategy forms our framework, DINO-Mix, which breaks the vicious cycle of bias and achieves remarkable performance on challenging semi-supervised class-imbalanced medical image segmentation benchmarks Synapse and AMOS.
Vision-Language Models (VLMs) are typically trained on a diverse set of multi-modal domains, yet current practices rely on costly manual tuning. We propose MaD-Mix, a principled and computationally efficient framework that derives multi-modal data mixtures for VLM training. MaD-Mix formulates data mixing as modality-aware domain alignment maximization and obtains closed-form multi-modal alignment scores from the Fenchel dual through inter-modal coupling variables. MaD-Mix systematically handles domains with missing modalities, allowing for the integration of language-only domains. Empirical evaluations across 0.5B and 7B models demonstrate that MaD-Mix accelerates VLM training across diverse benchmarks. MaD-Mix matches human-tuned data mixtures using 22% fewer training steps in image-text instruction tuning. In complex tri-modal video-image-text scenarios, where manual tuning becomes impractical, MaD-Mix boosts average accuracy over uniform weights, with negligible mixture computation overhead (< 1 GPU-hour), enabling scalable mixture design for modern VLM pipelines.
Medical image segmentation plays a vital role in diagnosis and treatment planning, but remains challenging due to the inherent complexity and variability of medical images, especially in capturing non-linear relationships within the data. We propose U-KABS, a novel hybrid framework that integrates the expressive power of Kolmogorov-Arnold Networks (KANs) with a U-shaped encoder-decoder architecture to enhance segmentation performance. The U-KABS model combines the convolutional and squeeze-and-excitation stage, which enhances channel-wise feature representations, and the KAN Bernstein Spline (KABS) stage, which employs learnable activation functions based on Bernstein polynomials and B-splines. This hybrid design leverages the global smoothness of Bernstein polynomials and the local adaptability of B-splines, enabling the model to effectively capture both broad contextual trends and fine-grained patterns critical for delineating complex structures in medical images. Skip connections between encoder and decoder layers support effective multi-scale feature fusion and preserve spatial details. Evaluated across diverse medical imaging benchmark datasets, U-KABS demonstrates superior performance compared to strong baselines, particularly in segmenting complex anatomical structures.
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
We present SciClaimEval, a new scientific dataset for the claim verification task. Unlike existing resources, SciClaimEval features authentic claims, including refuted ones, directly extracted from published papers. To create refuted claims, we introduce a novel approach that modifies the supporting evidence (figures and tables), rather than altering the claims or relying on large language models (LLMs) to fabricate contradictions. The dataset provides cross-modal evidence with diverse representations: figures are available as images, while tables are provided in multiple formats, including images, LaTeX source, HTML, and JSON. SciClaimEval contains 1,664 annotated samples from 180 papers across three domains, machine learning, natural language processing, and medicine, validated through expert annotation. We benchmark 11 multimodal foundation models, both open-source and proprietary, across the dataset. Results show that figure-based verification remains particularly challenging for all models, as a substantial performance gap remains between the best system and human baseline.
Purpose:Mammography screening is less sensitive in dense breasts, where tissue overlap and subtle findings increase perceptual difficulty. We present MammoColor, an end-to-end framework with a Task-Driven Chromatic Encoding (TDCE) module that converts single-channel mammograms into TDCE-encoded views for visual augmentation. Materials and Methods:MammoColor couples a lightweight TDCE module with a BI-RADS triage classifier and was trained end-to-end on VinDr-Mammo. Performance was evaluated on an internal test set, two public datasets (CBIS-DDSM and INBreast), and three external clinical cohorts. We also conducted a multi-reader, multi-case (MRMC) observer study with a washout period, comparing (1) grayscale-only, (2) TDCE-only, and (3) side-by-side grayscale+TDCE. Results:On VinDr-Mammo, MammoColor improved AUC from 0.7669 to 0.8461 (P=0.004). Gains were larger in dense breasts (AUC 0.749 to 0.835). In the MRMC study, TDCE-encoded images improved specificity (0.90 to 0.96; P=0.052) with comparable sensitivity. Conclusion:TDCE provides a task-optimized chromatic representation that may improve perceptual salience and reduce false-positive recalls in mammography triage.
Precise identification of individual cows is a fundamental prerequisite for comprehensive digital management in smart livestock farming. While existing animal identification methods excel in controlled, single-camera settings, they face severe challenges regarding cross-camera generalization. When models trained on source cameras are deployed to new monitoring nodes characterized by divergent illumination, backgrounds, viewpoints, and heterogeneous imaging properties, recognition performance often degrades dramatically. This limits the large-scale application of non-contact technologies in dynamic, real-world farming environments. To address this challenge, this study proposes a cross-camera cow identification framework based on disentangled representation learning. This framework leverages the Subspace Identifiability Guarantee (SIG) theory in the context of bovine visual recognition. By modeling the underlying physical data generation process, we designed a principle-driven feature disentanglement module that decomposes observed images into multiple orthogonal latent subspaces. This mechanism effectively isolates stable, identity-related biometric features that remain invariant across cameras, thereby substantially improving generalization to unseen cameras. We constructed a high-quality dataset spanning five distinct camera nodes, covering heterogeneous acquisition devices and complex variations in lighting and angles. Extensive experiments across seven cross-camera tasks demonstrate that the proposed method achieves an average accuracy of 86.0%, significantly outperforming the Source-only Baseline (51.9%) and the strongest cross-camera baseline method (79.8%). This work establishes a subspace-theoretic feature disentanglement framework for collaborative cross-camera cow identification, offering a new paradigm for precise animal monitoring in uncontrolled smart farming environments.
Personalized text-to-image generation aims to seamlessly integrate specific identities into textual descriptions. However, existing training-free methods often rely on rigid visual feature injection, creating a conflict between identity fidelity and textual adaptability. To address this, we propose FlexID, a novel training-free framework utilizing intent-aware modulation. FlexID orthogonally decouples identity into two dimensions: a Semantic Identity Projector (SIP) that injects high-level priors into the language space, and a Visual Feature Anchor (VFA) that ensures structural fidelity within the latent space. Crucially, we introduce a Context-Aware Adaptive Gating (CAG) mechanism that dynamically modulates the weights of these streams based on editing intent and diffusion timesteps. By automatically relaxing rigid visual constraints when strong editing intent is detected, CAG achieves synergy between identity preservation and semantic variation. Extensive experiments on IBench demonstrate that FlexID achieves a state-of-the-art balance between identity consistency and text adherence, offering an efficient solution for complex narrative generation.