Abstract:Asynchronous Federated Learning (AFL) has emerged as a significant research area in recent years. By not waiting for slower clients and executing the training process concurrently, it achieves faster training speed compared to traditional federated learning. However, due to the staleness introduced by the asynchronous process, its performance may degrade in some scenarios. Existing methods often use the round difference between the current model and the global model as the sole measure of staleness, which is coarse-grained and lacks observation of the model itself, thereby limiting the performance ceiling of asynchronous methods. In this paper, we propose FedPSA (Parameter Sensitivity-based Asynchronous Federated Learning), a more fine-grained AFL framework that leverages parameter sensitivity to measure model obsolescence and establishes a dynamic momentum queue to assess the current training phase in real time, thereby adjusting the tolerance for outdated information dynamically. Extensive experiments on multiple datasets and comparisons with various methods demonstrate the superior performance of FedPSA, achieving up to 6.37\% improvement over baseline methods and 1.93\% over the current state-of-the-art method.
Abstract:We address fine-grained visual reasoning in multimodal large language models (MLLMs), where key evidence may reside in tiny objects, cluttered regions, or subtle markings that are lost under a single global image encoding. We introduce TikArt (Thinking Aperture), an aperture-guided agent that casts multi-step vision-language reasoning as a decision process over regions of interest. TikArt follows a Think-Aperture-Observe loop, alternating between language generation and two aperture actions: Zoom extracts rectangular crops, while Segment invokes SAM2 to obtain mask-based crops for irregular targets. After every action, the model must produce an explicit observation, turning local visual cues into persistent linguistic memory. Built on Qwen3-VL-8B, TikArt optimizes its reasoning policy with AGRPO, a GRPO-style reinforcement learning algorithm with a two-stage curriculum: it warms up segmentation actions and then jointly optimizes visual math, fine-grained VQA, and segmentation, using rewards that couple task success with purposeful aperture use. Experiments on V*, HR-Bench-4K/8K, MME-RealWorld-Lite, MMStar, RefCOCO, and ReasonSeg show consistent gains over the backbone and yield interpretable aperture trajectories for high-resolution reasoning.




Abstract:Asynchronous federated learning (AFL) accelerates training by eliminating the need to wait for stragglers, but its asynchronous nature introduces gradient staleness, where outdated gradients degrade performance. Existing solutions address this issue with gradient buffers, forming a semi-asynchronous framework. However, this approach struggles when buffers accumulate numerous stale gradients, as blindly aggregating all gradients can harm training. To address this, we propose AFBS (Asynchronous FL Buffer Selection), the first algorithm to perform gradient selection within buffers while ensuring privacy protection. Specifically, the client sends the random projection encrypted label distribution matrix before training, and the server performs client clustering based on it. During training, server scores and selects gradients within each cluster based on their informational value, discarding low-value gradients to enhance semi-asynchronous federated learning. Extensive experiments in highly heterogeneous system and data environments demonstrate AFBS's superior performance compared to state-of-the-art methods. Notably, on the most challenging task, CIFAR-100, AFBS improves accuracy by up to 4.8% over the previous best algorithm and reduces the time to reach target accuracy by 75%.




Abstract:As an emerging paradigm of federated learning, asynchronous federated learning offers significant speed advantages over traditional synchronous federated learning. Unlike synchronous federated learning, which requires waiting for all clients to complete updates before aggregation, asynchronous federated learning aggregates the models that have arrived in realtime, greatly improving training speed. However, this mechanism also introduces the issue of client model version inconsistency. When the differences between models of different versions during aggregation become too large, it may lead to conflicts, thereby reducing the models accuracy. To address this issue, this paper proposes an asynchronous federated learning version correction algorithm based on knowledge distillation, named FedADT. FedADT applies knowledge distillation before aggregating gradients, using the latest global model to correct outdated information, thus effectively reducing the negative impact of outdated gradients on the training process. Additionally, FedADT introduces an adaptive weighting function that adjusts the knowledge distillation weight according to different stages of training, helps mitigate the misleading effects caused by the poorer performance of the global model in the early stages of training. This method significantly improves the overall performance of asynchronous federated learning without adding excessive computational overhead. We conducted experimental comparisons with several classical algorithms, and the results demonstrate that FedADT achieves significant improvements over other asynchronous methods and outperforms all methods in terms of convergence speed.