Anomaly Detection


Anomaly detection is the process of identifying unexpected items or events in data sets, which differ from the norm.

Visual Anomaly Detection under Complex View-Illumination Interplay: A Large-Scale Benchmark

Add code
May 16, 2025
Viaarxiv icon

Towards Scalable IoT Deployment for Visual Anomaly Detection via Efficient Compression

Add code
May 15, 2025
Viaarxiv icon

AdaptCLIP: Adapting CLIP for Universal Visual Anomaly Detection

Add code
May 15, 2025
Viaarxiv icon

NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI

Add code
May 20, 2025
Viaarxiv icon

Are vision language models robust to uncertain inputs?

Add code
May 17, 2025
Viaarxiv icon

Few-Shot Anomaly-Driven Generation for Anomaly Classification and Segmentation

Add code
May 14, 2025
Viaarxiv icon

Learning to Detect Multi-class Anomalies with Just One Normal Image Prompt

Add code
May 14, 2025
Viaarxiv icon

PyScrew: A Comprehensive Dataset Collection from Industrial Screw Driving Experiments

Add code
May 17, 2025
Viaarxiv icon

Online Isolation Forest

Add code
May 14, 2025
Viaarxiv icon

Diffusion Model in Hyperspectral Image Processing and Analysis: A Review

Add code
May 16, 2025
Viaarxiv icon