Abstract:VAD is a critical field in machine learning focused on identifying deviations from normal patterns in images, often challenged by the scarcity of anomalous data and the need for unsupervised training. To accelerate research and deployment in this domain, we introduce MoViAD, a comprehensive and highly modular library designed to provide fast and easy access to state-of-the-art VAD models, trainers, datasets, and VAD utilities. MoViAD supports a wide array of scenarios, including continual, semi-supervised, few-shots, noisy, and many more. In addition, it addresses practical deployment challenges through dedicated Edge and IoT settings, offering optimized models and backbones, along with quantization and compression utilities for efficient on-device execution and distributed inference. MoViAD integrates a selection of backbones, robust evaluation VAD metrics (pixel-level and image-level) and useful profiling tools for efficiency analysis. The library is designed for fast, effortless deployment, enabling machine learning engineers to easily use it for their specific setup with custom models, datasets, and backbones. At the same time, it offers the flexibility and extensibility researchers need to develop and experiment with new methods.
Abstract:Visual Anomaly Detection (VAD) is a key task in industrial settings, where minimizing operational costs is essential. Deploying deep learning models within Internet of Things (IoT) environments introduces specific challenges due to limited computational power and bandwidth of edge devices. This study investigates how to perform VAD effectively under such constraints by leveraging compact, efficient processing strategies. We evaluate several data compression techniques, examining the tradeoff between system latency and detection accuracy. Experiments on the MVTec AD benchmark demonstrate that significant compression can be achieved with minimal loss in anomaly detection performance compared to uncompressed data. Current results show up to 80% reduction in end-to-end inference time, including edge processing, transmission, and server computation.