Abstract:This paper presents a comprehensive collection of industrial screw driving datasets designed to advance research in manufacturing process monitoring and quality control. The collection comprises six distinct datasets with over 34,000 individual screw driving operations conducted under controlled experimental conditions, capturing the multifaceted nature of screw driving processes in plastic components. Each dataset systematically investigates specific aspects: natural thread degradation patterns through repeated use (s01), variations in surface friction conditions including contamination and surface treatments (s02), diverse assembly faults with up to 27 error types (s03-s04), and fabrication parameter variations in both upper and lower workpieces through modified injection molding settings (s05-s06). We detail the standardized experimental setup used across all datasets, including hardware specifications, process phases, and data acquisition methods. The hierarchical data model preserves the temporal and operational structure of screw driving processes, facilitating both exploratory analysis and the development of machine learning models. To maximize accessibility, we provide dual access pathways: raw data through Zenodo with a persistent DOI, and a purpose-built Python library (PyScrew) that offers consistent interfaces for data loading, preprocessing, and integration with common analysis workflows. These datasets serve diverse research applications including anomaly detection, predictive maintenance, quality control system development, feature extraction methodology evaluation, and classification of specific error conditions. By addressing the scarcity of standardized, comprehensive datasets in industrial manufacturing, this collection enables reproducible research and fair comparison of analytical approaches in an area of growing importance for industrial automation.
Abstract:Learning from demonstration (LfD) has the potential to greatly increase the applicability of robotic manipulators in modern industrial applications. Recent progress in LfD methods have put more emphasis in learning robustness than in guiding the demonstration itself in order to improve robustness. The latter is particularly important to consider when the target system reproducing the motion is structurally different to the demonstration system, as some demonstrated motions may not be reproducible. In light of this, this paper introduces a new guided learning from demonstration paradigm where an interactive graphical user interface (GUI) guides the user during demonstration, preventing them from demonstrating non-reproducible motions. The key aspect of our approach is determining the space of reproducible motions based on a motion planning framework which finds regions in the task space where trajectories are guaranteed to be of bounded length. We evaluate our method on two different setups with a six-degree-of-freedom (DOF) UR5 as the target system. First our method is validated using a seven-DOF Sawyer as the demonstration system. Then an extensive user study is carried out where several participants are asked to demonstrate, with and without guidance, a mock weld task using a hand held tool tracked by a VICON system. With guidance users were able to always carry out the task successfully in comparison to only 44% of the time without guidance.