Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Magnetic Resonance Imaging (MRI) provides detailed tissue information, but its clinical application is limited by long acquisition time, high cost, and restricted resolution. Image translation has recently gained attention as a strategy to address these limitations. Although Pix2Pix has been widely applied in medical image translation, its potential has not been fully explored. In this study, we propose an enhanced Pix2Pix framework that integrates Squeeze-and-Excitation Residual Networks (SEResNet) and U-Net++ to improve image generation quality and structural fidelity. SEResNet strengthens critical feature representation through channel attention, while U-Net++ enhances multi-scale feature fusion. A simplified PatchGAN discriminator further stabilizes training and refines local anatomical realism. Experimental results demonstrate that under few-shot conditions with fewer than 500 images, the proposed method achieves consistent structural fidelity and superior image quality across multiple intra-modality MRI translation tasks, showing strong generalization ability. These results suggest an effective extension of Pix2Pix for medical image translation.
Iris recognition is a mature biometric technology offering remarkable precision and speed, and allowing for large-scale deployments to populations exceeding a billion enrolled users (e.g., AADHAAR in India). However, in forensic applications, a human expert may be needed to review and confirm a positive identification before an iris matching result can be presented as evidence in court, especially in cases where processed samples are degraded (e.g., in post-mortem cases) or where there is a need to judge whether the sample is authentic, rather than a result of a presentation attack. This paper presents a study that examines human performance in iris verification in two controlled scenarios: (a) under varying pupil sizes, with and without a linear/nonlinear alignment of the pupil size between compared images, and (b) when both genuine and impostor iris image pairs are synthetically generated. The results demonstrate that pupil size normalization carried out by a modern autoencoder-based identity-preserving image-to-image translation model significantly improves verification accuracy. Participants were also able to determine whether iris pairs corresponded to the same or different eyes when both images were either authentic or synthetic. However, accuracy declined when subjects were comparing authentic irises against high-quality, same-eye synthetic counterparts. These findings (a) demonstrate the importance of pupil-size alignment for iris matching tasks in which humans are involved, and (b) indicate that despite the high fidelity of modern generative models, same-eye synthetic iris images are more often judged by humans as different-eye images, compared to same-eye authentic image pairs. We offer data and human judgments along with this paper to allow full replicability of this study and future works.
We study the online centralized charging scheduling problem (OCCSP). In this problem, a central authority must decide, in real time, when to charge dynamically arriving electric vehicles (EVs), subject to capacity limits, with the objective of balancing load across a finite planning horizon. To solve the problem, we first gamify it; that is, we model it as a game where charging blocks are placed within temporal and capacity constraints on a grid. We design heuristic policies, train learning agents with expert demonstrations, and improve them using Dataset Aggregation (DAgger). From a theoretical standpoint, we show that gamification reduces model complexity and yields tighter generalization bounds than vector-based formulations. Experiments across multiple EV arrival patterns confirm that gamified learning enhances load balancing. In particular, the image-to-movement model trained with DAgger consistently outperforms heuristic baselines, vector-based approaches, and supervised learning agents, while also demonstrating robustness in sensitivity analyses. These operational gains translate into tangible economic value. In a real-world case study for the Greater Montréal Area (Québec, Canada) using utility cost data, the proposed methods lower system costs by tens of millions of dollars per year over the prevailing practice and show clear potential to delay costly grid upgrades.
Synthetic Aperture Radar (SAR) provides robust all-weather imaging capabilities; however, translating SAR observations into photo-realistic optical images remains a fundamentally ill-posed problem. Current approaches are often hindered by the inherent speckle noise and geometric distortions of SAR data, which frequently result in semantic misinterpretation, ambiguous texture synthesis, and structural hallucinations. To address these limitations, a novel SAR-to-Optical (S2O) translation framework is proposed, integrating three core technical contributions: (i) Cross-Modal Semantic Alignment, which establishes an Optical-Aware SAR Encoder by distilling robust semantic priors from an Optical Teacher into a SAR Student (ii) Semantically-Grounded Generative Guidance, realized by a Semantically-Grounded ControlNet that integrates class-aware text prompts for global context with hierarchical visual prompts for local spatial guidance; and (iii) an Uncertainty-Aware Objective, which explicitly models aleatoric uncertainty to dynamically modulate the reconstruction focus, effectively mitigating artifacts caused by speckle-induced ambiguity. Extensive experiments demonstrate that the proposed method achieves superior perceptual quality and semantic consistency compared to state-of-the-art approaches.
Scalable and maintainable map representations are fundamental to enabling large-scale visual navigation and facilitating the deployment of robots in real-world environments. While collaborative localization across multi-session mapping enhances efficiency, traditional structure-based methods struggle with high maintenance costs and fail in feature-less environments or under significant viewpoint changes typical of crowd-sourced data. To address this, we propose OPENNAVMAP, a lightweight, structure-free topometric system leveraging 3D geometric foundation models for on-demand reconstruction. Our method unifies dynamic programming-based sequence matching, geometric verification, and confidence-calibrated optimization to robust, coarse-to-fine submap alignment without requiring pre-built 3D models. Evaluations on the Map-Free benchmark demonstrate superior accuracy over structure-from-motion and regression baselines, achieving an average translation error of 0.62m. Furthermore, the system maintains global consistency across 15km of multi-session data with an absolute trajectory error below 3m for map merging. Finally, we validate practical utility through 12 successful autonomous image-goal navigation tasks on simulated and physical robots. Code and datasets will be publicly available in https://rpl-cs-ucl.github.io/OpenNavMap_page.
Sickle cell disease causes erythrocytes to become sickle-shaped, affecting their movement in the bloodstream and reducing oxygen delivery. It has a high global prevalence and places a significant burden on healthcare systems, especially in resource-limited regions. Automated classification of sickle cells in blood images is crucial, allowing the specialist to reduce the effort required and avoid errors when quantifying the deformed cells and assessing the severity of a crisis. Recent studies have proposed various erythrocyte representation and classification methods. Since classification depends solely on cell shape, a suitable approach models erythrocytes as closed planar curves in shape space. This approach employs elastic distances between shapes, which are invariant under rotations, translations, scaling, and reparameterizations, ensuring consistent distance measurements regardless of the curves' position, starting point, or traversal speed. While previous methods exploiting shape space distances had achieved high accuracy, we refined the model by considering the geometric characteristics of healthy and sickled erythrocytes. Our method proposes (1) to employ a fixed parameterization based on the major axis of each cell to compute distances and (2) to align each cell with two templates using this parameterization before computing distances. Aligning shapes to templates before distance computation, a concept successfully applied in areas such as molecular dynamics, and using a fixed parameterization, instead of minimizing distances across all possible parameterizations, simplifies calculations. This strategy achieves 96.03\% accuracy rate in both supervised classification and unsupervised clustering. Our method ensures efficient erythrocyte classification, maintaining or improving accuracy over shape space models while significantly reducing computational costs.
Feed-forward view synthesis models predict a novel view in a single pass with minimal 3D inductive bias. Existing works encode cameras as Plücker ray maps, which tie predictions to the arbitrary world coordinate gauge and make them sensitive to small camera transformations, thereby undermining geometric consistency. In this paper, we ask what inputs best condition a model for robust and consistent view synthesis. We propose projective conditioning, which replaces raw camera parameters with a target-view projective cue that provides a stable 2D input. This reframes the task from a brittle geometric regression problem in ray space to a well-conditioned target-view image-to-image translation problem. Additionally, we introduce a masked autoencoding pretraining strategy tailored to this cue, enabling the use of large-scale uncalibrated data for pretraining. Our method shows improved fidelity and stronger cross-view consistency compared to ray-conditioned baselines on our view-consistency benchmark. It also achieves state-of-the-art quality on standard novel view synthesis benchmarks.
Diffractive neural networks have recently emerged as a promising framework for all-optical computing. However, these networks are typically trained for a single task, limiting their potential adoption in systems requiring multiple functionalities. Existing approaches to achieving multi-task functionality either modify the mechanical configuration of the network per task or use a different illumination wavelength or polarization state for each task. In this work, we propose a new control mechanism, which is based on the illumination's angular spectrum. Specifically, we shape the illumination using an amplitude mask that selectively controls its angular spectrum. We employ different illumination masks for achieving different network functionalities, so that the mask serves as a unique task encoder. Interestingly, we show that effective control can be achieved over a very narrow angular range, within the paraxial regime. We numerically illustrate the proposed approach by training a single diffractive network to perform multiple image-to-image translation tasks. In particular, we demonstrate translating handwritten digits into typeset digits of different values, and translating handwritten English letters into typeset numbers and typeset Greek letters, where the type of the output is determined by the illumination's angular components. As we show, the proposed framework can work under different coherence conditions, and can be combined with existing control strategies, such as different wavelengths. Our results establish the illumination angular spectrum as a powerful degree of freedom for controlling diffractive networks, enabling a scalable and versatile framework for multi-task all-optical computing.
Multimodal models excel in English, supported by abundant image-text and audio-text data, but performance drops sharply for other languages due to limited multilingual multimodal resources. Existing solutions rely heavily on machine translation, while advances in multilingual text modeling remain underutilized. We introduce METAL, a lightweight alignment method that learns only a few linear layers using English text alone to map multilingual text embeddings into a multimodal space. Despite its simplicity, METAL matches baseline performance in English (94.9 percent Recall at 10) and achieves strong zero-shot transfer (89.5 percent Recall at 10 averaged across 11 languages, 10 unseen) on XTD text-to-image retrieval. Qualitative t-SNE visualizations show that multilingual embeddings align tightly with multimodal representations, while weight analysis reveals that the transformation reshapes embedding geometry rather than performing trivial rotations. Beyond image-text retrieval, METAL generalizes to audio-text retrieval and cross-lingual text-to-image generation. We release code and checkpoints at https://github.com/m2m-codebase/M2M , as well as multilingual evaluation datasets including MSCOCO Multilingual 30K (https://huggingface.co/datasets/piyushsinghpasi/mscoco-multilingual-30k ), AudioCaps Multilingual (https://huggingface.co/datasets/piyushsinghpasi/audiocaps-multilingual ), and Clotho Multilingual (https://huggingface.co/datasets/piyushsinghpasi/clotho-multilingual ), to facilitate further research.
Vision-Language-Action (VLA) models have emerged as essential generalist robot policies for diverse manipulation tasks, conventionally relying on directly translating multimodal inputs into actions via Vision-Language Model (VLM) embeddings. Recent advancements have introduced explicit intermediary reasoning, such as sub-task prediction (language) or goal image synthesis (vision), to guide action generation. However, these intermediate reasoning are often indirect and inherently limited in their capacity to convey the full, granular information required for precise action execution. Instead, we posit that the most effective form of reasoning is one that deliberates directly in the action space. We introduce Action Chain-of-Thought (ACoT), a paradigm where the reasoning process itself is formulated as a structured sequence of coarse action intents that guide the final policy. In this paper, we propose ACoT-VLA, a novel architecture that materializes the ACoT paradigm. Specifically, we introduce two complementary components: an Explicit Action Reasoner (EAR) and Implicit Action Reasoner (IAR). The former proposes coarse reference trajectories as explicit action-level reasoning steps, while the latter extracts latent action priors from internal representations of multimodal input, co-forming an ACoT that conditions the downstream action head to enable grounded policy learning. Extensive experiments in real-world and simulation environments demonstrate the superiority of our proposed method, which achieves 98.5%, 84.1%, and 47.4% on LIBERO, LIBERO-Plus and VLABench, respectively.