What is Dehazing? Dehazing is the process of removing haze or fog from images to improve their visibility.
Papers and Code
Jul 16, 2024
Abstract:Single-image dehazing is a pivotal challenge in computer vision that seeks to remove haze from images and restore clean background details. Recognizing the limitations of traditional physical model-based methods and the inefficiencies of current attention-based solutions, we propose a new dehazing network combining an innovative Haze-Aware Attention Module (HAAM) with a Multiscale Frequency Enhancement Module (MFEM). The HAAM is inspired by the atmospheric scattering model, thus skillfully integrating physical principles into high-dimensional features for targeted dehazing. It picks up on latent features during the image restoration process, which gives a significant boost to the metrics, while the MFEM efficiently enhances high-frequency details, thus sidestepping wavelet or Fourier transform complexities. It employs multiscale fields to extract and emphasize key frequency components with minimal parameter overhead. Integrated into a simple U-Net framework, our Haze-Aware Attention Network (HAA-Net) for single-image dehazing significantly outperforms existing attention-based and transformer models in efficiency and effectiveness. Tested across various public datasets, the HAA-Net sets new performance benchmarks. Our work not only advances the field of image dehazing but also offers insights into the design of attention mechanisms for broader applications in computer vision.
* 13 pages, 6 figures
Via

Jul 14, 2024
Abstract:Although synthetic data can alleviate acquisition challenges in image dehazing tasks, it also introduces the problem of domain bias when dealing with small-scale data. This paper proposes a novel dual-branch collaborative unpaired dehazing model (DCM-dehaze) to address this issue. The proposed method consists of two collaborative branches: dehazing and contour constraints. Specifically, we design a dual depthwise separable convolutional module (DDSCM) to enhance the information expressiveness of deeper features and the correlation to shallow features. In addition, we construct a bidirectional contour function to optimize the edge features of the image to enhance the clarity and fidelity of the image details. Furthermore, we present feature enhancers via a residual dense architecture to eliminate redundant features of the dehazing process and further alleviate the domain deviation problem. Extensive experiments on benchmark datasets show that our method reaches the state-of-the-art. This project code will be available at \url{https://github.com/Fan-pixel/DCM-dehaze.
Via

Jul 13, 2024
Abstract:Diffusion models have made remarkable progress in solving various inverse problems, attributing to the generative modeling capability of the data manifold. Posterior sampling from the conditional score function enable the precious data consistency certified by the measurement-based likelihood term. However, most prevailing approaches confined to the deterministic deterioration process of the measurement model, regardless of capricious unpredictable disturbance in real-world sceneries. To address this obstacle, we show that the measurement-based likelihood can be renovated with restoration-based likelihood via the opposite probabilistic graphic direction, licencing the patronage of various off-the-shelf restoration models and extending the strictly deterministic deterioration process to adaptable clustered processes with the supposed prototype, in what we call restorer guidance. Particularly, assembled with versatile prototypes optionally, we can resolve inverse problems with bunch of choices for assorted sample quality and realize the proficient deterioration control with assured realistic. We show that our work can be formally analogous to the transition from classifier guidance to classifier-free guidance in the field of inverse problem solver. Experiments on multifarious inverse problems demonstrate the effectiveness of our method, including image dehazing, rain streak removal, and motion deblurring.
* 24 pages, 9 figures
Via

Jul 11, 2024
Abstract:Neural rendering methods can achieve near-photorealistic image synthesis of scenes from posed input images. However, when the images are imperfect, e.g., captured in very low-light conditions, state-of-the-art methods fail to reconstruct high-quality 3D scenes. Recent approaches have tried to address this limitation by modeling various degradation processes in the image formation model; however, this limits them to specific image degradations. In this paper, we propose a generalizable neural rendering method that can perform high-fidelity novel view synthesis under several degradations. Our method, GAURA, is learning-based and does not require any test-time scene-specific optimization. It is trained on a synthetic dataset that includes several degradation types. GAURA outperforms state-of-the-art methods on several benchmarks for low-light enhancement, dehazing, deraining, and on-par for motion deblurring. Further, our model can be efficiently fine-tuned to any new incoming degradation using minimal data. We thus demonstrate adaptation results on two unseen degradations, desnowing and removing defocus blur. Code and video results are available at vinayak-vg.github.io/GAURA.
* European Conference on Computer Vision(ECCV) 2024
Via

Jul 01, 2024
Abstract:Image dehazing, addressing atmospheric interference like fog and haze, remains a pervasive challenge crucial for robust vision applications such as surveillance and remote sensing under adverse visibility. While various methodologies have evolved from early works predicting transmission matrix and atmospheric light features to deep learning and dehazing networks, they innately prioritize dehazing quality metrics, neglecting the need for real-time applicability in time-sensitive domains like autonomous driving. This work introduces FALCON (Frequency Adjoint Link with CONtinuous density mask), a single-image dehazing system achieving state-of-the-art performance on both quality and speed. Particularly, we develop a novel bottleneck module, namely, Frequency Adjoint Link, operating in the frequency space to globally expand the receptive field with minimal growth in network size. Further, we leverage the underlying haze distribution based on the atmospheric scattering model via a Continuous Density Mask (CDM) which serves as a continuous-valued mask input prior and a differentiable auxiliary loss. Comprehensive experiments involving multiple state-of-the-art methods and ablation analysis demonstrate FALCON's exceptional performance in both dehazing quality and speed (i.e., >$180 frames-per-second), quantified by metrics such as FPS, PSNR, and SSIM.
Via

Jun 30, 2024
Abstract:This work aims to tackle the all-in-one image restoration task, which seeks to handle multiple types of degradation with a single model. The primary challenge is to extract degradation representations from the input degraded images and use them to guide the model's adaptation to specific degradation types. Recognizing that various degradations affect image content differently across frequency bands, we propose a new all-in-one image restoration approach from a frequency perspective, leveraging advanced vision transformers. Our method consists of two main components: a frequency-aware Degradation prior learning transformer (Dformer) and a degradation-adaptive Restoration transformer (Rformer). The Dformer captures the essential characteristics of various degradations by decomposing inputs into different frequency components. By understanding how degradations affect these frequency components, the Dformer learns robust priors that effectively guide the restoration process. The Rformer then employs a degradation-adaptive self-attention module to selectively focus on the most affected frequency components, guided by the learned degradation representations. Extensive experimental results demonstrate that our approach outperforms the existing methods on four representative restoration tasks, including denoising, deraining, dehazing and deblurring. Additionally, our method offers benefits for handling spatially variant degradations and unseen degradation levels.
* 8 pages
Via

Jun 30, 2024
Abstract:Due to the unaffordable size and intensive computation costs of low-level vision models, All-in-One models that are designed to address a handful of low-level vision tasks simultaneously have been popular. However, existing All-in-One models are limited in terms of the range of tasks and performance. To overcome these limitations, we propose Instruct-IPT -- an All-in-One Image Processing Transformer that could effectively address manifold image restoration tasks with large inter-task gaps, such as denoising, deblurring, deraining, dehazing, and desnowing. Rather than popular feature adaptation methods, we propose weight modulation that adapts weights to specific tasks. Firstly, we figure out task-sensitive weights via a toy experiment and introduce task-specific biases on top of them. Secondly, we conduct rank analysis for a good compression strategy and perform low-rank decomposition on the biases. Thirdly, we propose synchronous training that updates the task-general backbone model and the task-specific biases simultaneously. In this way, the model is instructed to learn general and task-specific knowledge. Via our simple yet effective method that instructs the IPT to be task experts, Instruct-IPT could better cooperate between tasks with distinct characteristics at humble costs. Further, we propose to maneuver Instruct-IPT with text instructions for better user interfaces. We have conducted experiments on Instruct-IPT to demonstrate the effectiveness of our method on manifold tasks, and we have effectively extended our method to diffusion denoisers as well. The code is available at https://github.com/huawei-noah/Pretrained-IPT.
* 15 pages, 4 figures
Via

Jun 28, 2024
Abstract:We present Ksformer, utilizing Multi-scale Key-select Routing Attention (MKRA) for intelligent selection of key areas through multi-channel, multi-scale windows with a top-k operator, and Lightweight Frequency Processing Module (LFPM) to enhance high-frequency features, outperforming other dehazing methods in tests.
* 5 pages,4 figures,IEICE Trans. Information and Systems
Via

Jun 13, 2024
Abstract:Segment Anything Model (SAM) has emerged as a transformative approach in image segmentation, acclaimed for its robust zero-shot segmentation capabilities and flexible prompting system. Nonetheless, its performance is challenged by images with degraded quality. Addressing this limitation, we propose the Robust Segment Anything Model (RobustSAM), which enhances SAM's performance on low-quality images while preserving its promptability and zero-shot generalization. Our method leverages the pre-trained SAM model with only marginal parameter increments and computational requirements. The additional parameters of RobustSAM can be optimized within 30 hours on eight GPUs, demonstrating its feasibility and practicality for typical research laboratories. We also introduce the Robust-Seg dataset, a collection of 688K image-mask pairs with different degradations designed to train and evaluate our model optimally. Extensive experiments across various segmentation tasks and datasets confirm RobustSAM's superior performance, especially under zero-shot conditions, underscoring its potential for extensive real-world application. Additionally, our method has been shown to effectively improve the performance of SAM-based downstream tasks such as single image dehazing and deblurring.
* Accepted by CVPR2024 (Highlight); Project Page:
https://robustsam.github.io/
Via

Jun 12, 2024
Abstract:Real-world Image Dehazing (RID) aims to alleviate haze-induced degradation in real-world settings. This task remains challenging due to the complexities in accurately modeling real haze distributions and the scarcity of paired real-world data. To address these challenges, we first introduce a cooperative unfolding network that jointly models atmospheric scattering and image scenes, effectively integrating physical knowledge into deep networks to restore haze-contaminated details. Additionally, we propose the first RID-oriented iterative mean-teacher framework, termed the Coherence-based Label Generator, to generate high-quality pseudo labels for network training. Specifically, we provide an optimal label pool to store the best pseudo-labels during network training, leveraging both global and local coherence to select high-quality candidates and assign weights to prioritize haze-free regions. We verify the effectiveness of our method, with experiments demonstrating that it achieves state-of-the-art performance on RID tasks. Code will be available at \url{https://github.com/cnyvfang/CORUN-Colabator}.
* 10 pages, 7 figures, 6 tables
Via
