Text classification is the process of categorizing text documents into predefined categories or labels.
Multimodal large language models (MLLMs) hold promise for integrating diverse data modalities, but current medical adaptations such as LLaVA-Med often fail to fully exploit the synergy between color fundus photography (CFP) and optical coherence tomography (OCT), and offer limited interpretability of quantitative biomarkers. We introduce GROK, a grounded multimodal large language model that jointly processes CFP, OCT, and text to deliver clinician-grade diagnoses of ocular and systemic disease. GROK comprises three core modules: Knowledge-Guided Instruction Generation, CLIP-Style OCT-Biomarker Alignment, and Supervised Instruction Fine-Tuning, which together establish a quantitative-to-qualitative diagnostic chain of thought, mirroring real clinical reasoning when producing detailed lesion annotations. To evaluate our approach, we introduce the Grounded Ophthalmic Understanding benchmark, which covers six disease categories and three tasks: macro-level diagnostic classification, report generation quality, and fine-grained clinical assessment of the generated chain of thought. Experiments show that, with only LoRA (Low-Rank Adaptation) fine-tuning of a 7B-parameter Qwen2 backbone, GROK outperforms comparable 7B and 32B baselines on both report quality and fine-grained clinical metrics, and even exceeds OpenAI o3. Code and data are publicly available in the GROK repository.
The rapid advancement of large language models (LLMs) has blurred the line between AI-generated and human-written text. This progress brings societal risks such as misinformation, authorship ambiguity, and intellectual property concerns, highlighting the urgent need for reliable AI-generated text detection methods. However, recent advances in generative language modeling have resulted in significant overlap between the feature distributions of human-written and AI-generated text, blurring classification boundaries and making accurate detection increasingly challenging. To address the above challenges, we propose a DNA-inspired perspective, leveraging a repair-based process to directly and interpretably capture the intrinsic differences between human-written and AI-generated text. Building on this perspective, we introduce DNA-DetectLLM, a zero-shot detection method for distinguishing AI-generated and human-written text. The method constructs an ideal AI-generated sequence for each input, iteratively repairs non-optimal tokens, and quantifies the cumulative repair effort as an interpretable detection signal. Empirical evaluations demonstrate that our method achieves state-of-the-art detection performance and exhibits strong robustness against various adversarial attacks and input lengths. Specifically, DNA-DetectLLM achieves relative improvements of 5.55% in AUROC and 2.08% in F1 score across multiple public benchmark datasets.
Ensuring that multi-modal content adheres to brand, legal, or platform-specific compliance standards is an increasingly complex challenge across domains. Traditional compliance frameworks typically rely on disjointed, multi-stage pipelines that integrate separate modules for image classification, text extraction, audio transcription, hand-crafted checks, and rule-based merges. This architectural fragmentation increases operational overhead, hampers scalability, and hinders the ability to adapt to dynamic guidelines efficiently. With the emergence of Multimodal Large Language Models (MLLMs), there is growing potential to unify these workflows under a single, general-purpose framework capable of jointly processing visual and textual content. In light of this, we propose Multimodal Parameter Agnostic Compliance Engine (M-PACE), a framework designed for assessing attributes across vision-language inputs in a single pass. As a representative use case, we apply M-PACE to advertisement compliance, demonstrating its ability to evaluate over 15 compliance-related attributes. To support structured evaluation, we introduce a human-annotated benchmark enriched with augmented samples that simulate challenging real-world conditions, including visual obstructions and profanity injection. M-PACE employs a mother-child MLLM setup, demonstrating that a stronger parent MLLM evaluating the outputs of smaller child models can significantly reduce dependence on human reviewers, thereby automating quality control. Our analysis reveals that inference costs reduce by over 31 times, with the most efficient models (Gemini 2.0 Flash as child MLLM selected by mother MLLM) operating at 0.0005 per image, compared to 0.0159 for Gemini 2.5 Pro with comparable accuracy, highlighting the trade-off between cost and output quality achieved in real time by M-PACE in real life deployment over advertising data.
Ensuring that every vehicle leaving a modern production line is built to the correct \emph{variant} specification and is free from visible defects is an increasingly complex challenge. We present the \textbf{Automated Vehicle Inspection (AVI)} platform, an end-to-end, \emph{multi-view} perception system that couples deep-learning detectors with a semantic rule engine to deliver \emph{variant-aware} quality control in real time. Eleven synchronized cameras capture a full 360{\deg} sweep of each vehicle; task-specific views are then routed to specialised modules: YOLOv8 for part detection, EfficientNet for ICE/EV classification, Gemini-1.5 Flash for mascot OCR, and YOLOv8-Seg for scratch-and-dent segmentation. A view-aware fusion layer standardises evidence, while a VIN-conditioned rule engine compares detected features against the expected manifest, producing an interpretable pass/fail report in \(\approx\! 300\,\text{ms}\). On a mixed data set of Original Equipment Manufacturer(OEM) vehicle data sets of four distinct models plus public scratch/dent images, AVI achieves \textbf{ 93 \%} verification accuracy, \textbf{86 \%} defect-detection recall, and sustains \(\mathbf{3.3}\) vehicles/min, surpassing single-view or no segmentation baselines by large margins. To our knowledge, this is the first publicly reported system that unifies multi-camera feature validation with defect detection in a deployable automotive setting in industry.
At the core of Deep Research is knowledge mining, the task of extracting structured information from massive unstructured text in response to user instructions. Large language models (LLMs) excel at interpreting such instructions but are prohibitively expensive to deploy at scale, while traditional pipelines of classifiers and extractors remain efficient yet brittle and unable to generalize to new tasks. We introduce Falconer, a collaborative framework that combines the agentic reasoning of LLMs with lightweight proxy models for scalable knowledge mining. In Falconer, LLMs act as planners, decomposing user instructions into executable pipelines, and as annotators, generating supervision to train small proxies. The framework unifies classification and extraction into two atomic operations, get label and get span, enabling a single instruction-following model to replace multiple task-specific components. To evaluate the consistency between proxy models incubated by Falconer and annotations provided by humans and large models, we construct new benchmarks covering both planning and end-to-end execution. Experiments show that Falconer closely matches state-of-the-art LLMs in instruction-following accuracy while reducing inference cost by up to 90% and accelerating large-scale knowledge mining by more than 20x, offering an efficient and scalable foundation for Deep Research.




Few-shot image classification remains challenging due to the limited availability of labeled examples. Recent approaches have explored generating synthetic training data using text-to-image diffusion models, but often require extensive model fine-tuning or external information sources. We present a novel training-free approach, called DIPSY, that leverages IP-Adapter for image-to-image translation to generate highly discriminative synthetic images using only the available few-shot examples. DIPSY introduces three key innovations: (1) an extended classifier-free guidance scheme that enables independent control over positive and negative image conditioning; (2) a class similarity-based sampling strategy that identifies effective contrastive examples; and (3) a simple yet effective pipeline that requires no model fine-tuning or external captioning and filtering. Experiments across ten benchmark datasets demonstrate that our approach achieves state-of-the-art or comparable performance, while eliminating the need for generative model adaptation or reliance on external tools for caption generation and image filtering. Our results highlight the effectiveness of leveraging dual image prompting with positive-negative guidance for generating class-discriminative features, particularly for fine-grained classification tasks.
The proliferation of disinformation, particularly in multimodal contexts combining text and images, presents a significant challenge across digital platforms. This study investigates the potential of large multimodal models (LMMs) in detecting and mitigating false information. We propose to approach multimodal disinformation detection by leveraging the advanced capabilities of the GPT-4o model. Our contributions include: (1) the development of an optimized prompt incorporating advanced prompt engineering techniques to ensure precise and consistent evaluations; (2) the implementation of a structured framework for multimodal analysis, including a preprocessing methodology for images and text to comply with the model's token limitations; (3) the definition of six specific evaluation criteria that enable a fine-grained classification of content, complemented by a self-assessment mechanism based on confidence levels; (4) a comprehensive performance analysis of the model across multiple heterogeneous datasets Gossipcop, Politifact, Fakeddit, MMFakeBench, and AMMEBA highlighting GPT-4o's strengths and limitations in disinformation detection; (5) an investigation of prediction variability through repeated testing, evaluating the stability and reliability of the model's classifications; and (6) the introduction of confidence-level and variability-based evaluation methods. These contributions provide a robust and reproducible methodological framework for automated multimodal disinformation analysis.
Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
Large Language Models (LLMs) are gaining popularity and improving rapidly. Tokenizers are crucial components of natural language processing, especially for LLMs. Tokenizers break down input text into tokens that models can easily process while ensuring the text is accurately represented, capturing its meaning and structure. Effective tokenizers enhance the capabilities of LLMs by improving a model's understanding of context and semantics, ultimately leading to better performance in various downstream tasks, such as translation, classification, sentiment analysis, and text generation. Most pre-trained tokenizers are suitable for high-resource languages like English but perform poorly for low-resource languages. Dzongkha, Bhutan's national language spoken by around seven hundred thousand people, is a low-resource language, and its linguistic complexity poses unique NLP challenges. Despite some progress, significant research in Dzongkha NLP is lacking, particularly in tokenization. This study evaluates the training and performance of three common tokenization algorithms in comparison to other popular methods. Specifically, Byte-Pair Encoding (BPE), WordPiece, and SentencePiece (Unigram) were evaluated for their suitability for Dzongkha. Performance was assessed using metrics like Subword Fertility, Proportion of Continued Words, Normalized Sequence Length, and execution time. The results show that while all three algorithms demonstrate potential, SentencePiece is the most effective for Dzongkha tokenization, paving the way for further NLP advancements. This underscores the need for tailored approaches for low-resource languages and ongoing research. In this study, we presented three tokenization algorithms for Dzongkha, paving the way for building Dzongkha Large Language Models.
Text adversarial attack methods are typically designed for static scenarios with fixed numbers of output labels and a predefined label space, relying on extensive querying of the victim model (query-based attacks) or the surrogate model (transfer-based attacks). To address this gap, we introduce the Textual Dynamic Outputs Attack (TDOA) method, which employs a clustering-based surrogate model training approach to convert the dynamic-output scenario into a static single-output scenario. To improve attack effectiveness, we propose the farthest-label targeted attack strategy, which selects adversarial vectors that deviate most from the model's coarse-grained labels, thereby maximizing disruption. We extensively evaluate TDOA on four datasets and eight victim models (e.g., ChatGPT-4o, ChatGPT-4.1), showing its effectiveness in crafting adversarial examples and its strong potential to compromise large language models with limited access. With a single query per text, TDOA achieves a maximum attack success rate of 50.81\%. Additionally, we find that TDOA also achieves state-of-the-art performance in conventional static output scenarios, reaching a maximum ASR of 82.68\%. Meanwhile, by conceptualizing translation tasks as classification problems with unbounded output spaces, we extend the TDOA framework to generative settings, surpassing prior results by up to 0.64 RDBLEU and 0.62 RDchrF.