Topic:Multiple Instance Learning
What is Multiple Instance Learning? Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.
Papers and Code
Jul 03, 2025
Abstract:Multiple instance learning (MIL) significantly reduced annotation costs via bag-level weak labels for large-scale images, such as histopathological whole slide images (WSIs). However, its adaptability to continual tasks with minimal forgetting has been rarely explored, especially on instance classification for localization. Weakly incremental learning for semantic segmentation has been studied for continual localization, but it focused on natural images, leveraging global relationships among hundreds of small patches (e.g., $16 \times 16$) using pre-trained models. This approach seems infeasible for MIL localization due to enormous amounts ($\sim 10^5$) of large patches (e.g., $256 \times 256$) and no available global relationships such as cancer cells. To address these challenges, we propose Continual Multiple Instance Learning with Enhanced Localization (CoMEL), an MIL framework for both localization and adaptability with minimal forgetting. CoMEL consists of (1) Grouped Double Attention Transformer (GDAT) for efficient instance encoding, (2) Bag Prototypes-based Pseudo-Labeling (BPPL) for reliable instance pseudo-labeling, and (3) Orthogonal Weighted Low-Rank Adaptation (OWLoRA) to mitigate forgetting in both bag and instance classification. Extensive experiments on three public WSI datasets demonstrate superior performance of CoMEL, outperforming the prior arts by up to $11.00\%$ in bag-level accuracy and up to $23.4\%$ in localization accuracy under the continual MIL setup.
* Accepted at ICCV 2025
Via

Jul 09, 2025
Abstract:In digital pathology, whole-slide images (WSIs) are often difficult to handle due to their gigapixel scale, so most approaches train patch encoders via self-supervised learning (SSL) and then aggregate the patch-level embeddings via multiple instance learning (MIL) or slide encoders for downstream tasks. However, patch-level SSL may overlook complex domain-specific features that are essential for biomarker prediction, such as mutation status and molecular characteristics, as SSL methods rely only on basic augmentations selected for natural image domains on small patch-level area. Moreover, SSL methods remain less data efficient than fully supervised approaches, requiring extensive computational resources and datasets to achieve competitive performance. To address these limitations, we present EXAONE Path 2.0, a pathology foundation model that learns patch-level representations under direct slide-level supervision. Using only 37k WSIs for training, EXAONE Path 2.0 achieves state-of-the-art average performance across 10 biomarker prediction tasks, demonstrating remarkable data efficiency.
* EXAONE Path 2.0 technical report
Via

Jul 02, 2025
Abstract:Fetal abdominal malformations are serious congenital anomalies that require accurate diagnosis to guide pregnancy management and reduce mortality. Although AI has demonstrated significant potential in medical diagnosis, its application to prenatal abdominal anomalies remains limited. Most existing studies focus on image-level classification and rely on standard plane localization, placing less emphasis on case-level diagnosis. In this paper, we develop a case-level multiple instance learning (MIL)-based method, free of standard plane localization, for classifying fetal abdominal anomalies in prenatal ultrasound. Our contribution is three-fold. First, we adopt a mixture-of-attention-experts module (MoAE) to weight different attention heads for various planes. Secondly, we propose a medical-knowledge-driven feature selection module (MFS) to align image features with medical knowledge, performing self-supervised image token selection at the case-level. Finally, we propose a prompt-based prototype learning (PPL) to enhance the MFS. Extensively validated on a large prenatal abdominal ultrasound dataset containing 2,419 cases, with a total of 24,748 images and 6 categories, our proposed method outperforms the state-of-the-art competitors. Codes are available at:https://github.com/LL-AC/AAcls.
* Accepted by MICCAI 2025
Via

Jul 16, 2025
Abstract:With recent advancements in text-to-image (T2I) models, effectively generating multiple instances within a single image prompt has become a crucial challenge. Existing methods, while successful in generating positions of individual instances, often struggle to account for relationship discrepancy and multiple attributes leakage. To address these limitations, this paper proposes the relation-aware disentangled learning (RaDL) framework. RaDL enhances instance-specific attributes through learnable parameters and generates relation-aware image features via Relation Attention, utilizing action verbs extracted from the global prompt. Through extensive evaluations on benchmarks such as COCO-Position, COCO-MIG, and DrawBench, we demonstrate that RaDL outperforms existing methods, showing significant improvements in positional accuracy, multiple attributes consideration, and the relationships between instances. Our results present RaDL as the solution for generating images that consider both the relationships and multiple attributes of each instance within the multi-instance image.
* 6 Pages
Via

Jul 28, 2025
Abstract:Computer vision seeks to infer a wide range of information about objects and events. However, vision systems based on conventional imaging are limited to extracting information only from the visible surfaces of scene objects. For instance, a vision system can detect and identify a Coke can in the scene, but it cannot determine whether the can is full or empty. In this paper, we aim to expand the scope of computer vision to include the novel task of inferring the hidden liquid levels of opaque containers by sensing the tiny vibrations on their surfaces. Our method provides a first-of-a-kind way to inspect the fill level of multiple sealed containers remotely, at once, without needing physical manipulation and manual weighing. First, we propose a novel speckle-based vibration sensing system for simultaneously capturing scene vibrations on a 2D grid of points. We use our system to efficiently and remotely capture a dataset of vibration responses for a variety of everyday liquid containers. Then, we develop a transformer-based approach for analyzing the captured vibrations and classifying the container type and its hidden liquid level at the time of measurement. Our architecture is invariant to the vibration source, yielding correct liquid level estimates for controlled and ambient scene sound sources. Moreover, our model generalizes to unseen container instances within known classes (e.g., training on five Coke cans of a six-pack, testing on a sixth) and fluid levels. We demonstrate our method by recovering liquid levels from various everyday containers.
* ICCV 2025
Via

Jul 28, 2025
Abstract:Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific $n$-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.
Via

Jun 25, 2025
Abstract:Survival prediction using whole slide images (WSIs) can be formulated as a multiple instance learning (MIL) problem. However, existing MIL methods often fail to explicitly capture pathological heterogeneity within WSIs, both globally -- through long-tailed morphological distributions, and locally through -- tile-level prediction uncertainty. Optimal transport (OT) provides a principled way of modeling such heterogeneity by incorporating marginal distribution constraints. Building on this insight, we propose OTSurv, a novel MIL framework from an optimal transport perspective. Specifically, OTSurv formulates survival predictions as a heterogeneity-aware OT problem with two constraints: (1) global long-tail constraint that models prior morphological distributions to avert both mode collapse and excessive uniformity by regulating transport mass allocation, and (2) local uncertainty-aware constraint that prioritizes high-confidence patches while suppressing noise by progressively raising the total transport mass. We then recast the initial OT problem, augmented by these constraints, into an unbalanced OT formulation that can be solved with an efficient, hardware-friendly matrix scaling algorithm. Empirically, OTSurv sets new state-of-the-art results across six popular benchmarks, achieving an absolute 3.6% improvement in average C-index. In addition, OTSurv achieves statistical significance in log-rank tests and offers high interpretability, making it a powerful tool for survival prediction in digital pathology. Our codes are available at https://github.com/Y-Research-SBU/OTSurv.
Via

Jul 23, 2025
Abstract:Multimodal representation learning seeks to create a unified representation space by integrating diverse data modalities to improve multimodal understanding. Traditional methods often depend on pairwise contrastive learning, which relies on a predefined anchor modality, restricting alignment across all modalities. Recent advances have investigated the simultaneous alignment of multiple modalities, yet several challenges remain, such as limitations imposed by fixed anchor points and instability arising from optimizing the product of singular values. To address the challenges, in this paper, we propose Principled Multimodal Representation Learning (PMRL), a novel framework that achieves simultaneous alignment of multiple modalities without anchor dependency in a more stable manner. Specifically, grounded in the theoretical insight that full alignment corresponds to a rank-1 Gram matrix, PMRL optimizes the dominant singular value of the representation matrix to align modalities along a shared leading direction. We propose a softmax-based loss function that treats singular values as logits to prioritize the largest singular value. Besides, instance-wise contrastive regularization on the leading eigenvectors maintains inter-instance separability and prevents representation collapse. Extensive experiments across diverse tasks demonstrate PMRL's superiority compared to baseline methods. The source code will be publicly available.
* 32 pages, 9 figures, 10 tables
Via

Jul 27, 2025
Abstract:Scientific and data science applications are becoming increasingly complex, with growing computational and memory demands. Modern high performance computing (HPC) systems provide high parallelism and heterogeneity across nodes, devices, and cores. To achieve good performance, effective scheduling and load balancing techniques are essential. Parallel programming frameworks such as OpenMP now offer a variety of advanced scheduling algorithms to support diverse applications and platforms. This creates an instance of the scheduling algorithm selection problem, which involves identifying the most suitable algorithm for a given combination of workload and system characteristics. In this work, we explore learning-based approaches for selecting scheduling algorithms in OpenMP. We propose and evaluate expert-based and reinforcement learning (RL)-based methods, and conduct a detailed performance analysis across six applications and three systems. Our results show that RL methods are capable of learning high-performing scheduling decisions, although they require significant exploration, with the choice of reward function playing a key role. Expert-based methods, in contrast, rely on prior knowledge and involve less exploration, though they may not always identify the optimal algorithm for a specific application-system pair. By combining expert knowledge with RL-based learning, we achieve improved performance and greater adaptability. Overall, this work demonstrates that dynamic selection of scheduling algorithms during execution is both viable and beneficial for OpenMP applications. The approach can also be extended to MPI-based programs, enabling optimization of scheduling decisions across multiple levels of parallelism.
* To appear at IEEE ACCESS
Via

Jul 09, 2025
Abstract:Contrastive Learning (CL), a leading paradigm in Self-Supervised Learning (SSL), typically relies on pairs of data views generated through augmentation. While multiple augmentations per instance (more than two) improve generalization in supervised learning, current CL methods handle additional views suboptimally by simply aggregating different pairwise objectives. This approach suffers from four critical limitations: (L1) it utilizes multiple optimization terms per data point resulting to conflicting objectives, (L2) it fails to model all interactions across views and data points, (L3) it inherits fundamental limitations (e.g. alignment-uniformity coupling) from pairwise CL losses, and (L4) it prevents fully realizing the benefits of increased view multiplicity observed in supervised settings. We address these limitations through two novel loss functions: MV-InfoNCE, which extends InfoNCE to incorporate all possible view interactions simultaneously in one term per data point, and MV-DHEL, which decouples alignment from uniformity across views while scaling interaction complexity with view multiplicity. Both approaches are theoretically grounded - we prove they asymptotically optimize for alignment of all views and uniformity, providing principled extensions to multi-view contrastive learning. Our empirical results on ImageNet1K and three other datasets demonstrate that our methods consistently outperform existing multi-view approaches and effectively scale with increasing view multiplicity. We also apply our objectives to multimodal data and show that, in contrast to other contrastive objectives, they can scale beyond just two modalities. Most significantly, ablation studies reveal that MV-DHEL with five or more views effectively mitigates dimensionality collapse by fully utilizing the embedding space, thereby delivering multi-view benefits observed in supervised learning.
Via
