Multiple Instance Learning


Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.

Continual Multiple Instance Learning with Enhanced Localization for Histopathological Whole Slide Image Analysis

Add code
Jul 03, 2025
Viaarxiv icon

EXAONE Path 2.0: Pathology Foundation Model with End-to-End Supervision

Add code
Jul 09, 2025
Viaarxiv icon

Medical-Knowledge Driven Multiple Instance Learning for Classifying Severe Abdominal Anomalies on Prenatal Ultrasound

Add code
Jul 02, 2025
Viaarxiv icon

RaDL: Relation-aware Disentangled Learning for Multi-Instance Text-to-Image Generation

Add code
Jul 16, 2025
Viaarxiv icon

Learning to See Inside Opaque Liquid Containers using Speckle Vibrometry

Add code
Jul 28, 2025
Viaarxiv icon

Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution

Add code
Jul 28, 2025
Viaarxiv icon

OTSurv: A Novel Multiple Instance Learning Framework for Survival Prediction with Heterogeneity-aware Optimal Transport

Add code
Jun 25, 2025
Viaarxiv icon

Principled Multimodal Representation Learning

Add code
Jul 23, 2025
Viaarxiv icon

A Comparative Study of OpenMP Scheduling Algorithm Selection Strategies

Add code
Jul 27, 2025
Viaarxiv icon

A Principled Framework for Multi-View Contrastive Learning

Add code
Jul 09, 2025
Viaarxiv icon