Multiple instance learning is a machine learning paradigm where training data is organized into bags of instances.
We propose unsupervised multi-scenario (UMS) person re-identification (ReID) as a new task that expands ReID across diverse scenarios (cross-resolution, clothing change, etc.) within a single coherent framework. To tackle UMS-ReID, we introduce image-text knowledge modeling (ITKM) -- a three-stage framework that effectively exploits the representational power of vision-language models. We start with a pre-trained CLIP model with an image encoder and a text encoder. In Stage I, we introduce a scenario embedding in the image encoder and fine-tune the encoder to adaptively leverage knowledge from multiple scenarios. In Stage II, we optimize a set of learned text embeddings to associate with pseudo-labels from Stage I and introduce a multi-scenario separation loss to increase the divergence between inter-scenario text representations. In Stage III, we first introduce cluster-level and instance-level heterogeneous matching modules to obtain reliable heterogeneous positive pairs (e.g., a visible image and an infrared image of the same person) within each scenario. Next, we propose a dynamic text representation update strategy to maintain consistency between text and image supervision signals. Experimental results across multiple scenarios demonstrate the superiority and generalizability of ITKM; it not only outperforms existing scenario-specific methods but also enhances overall performance by integrating knowledge from multiple scenarios.
Reliable learning on low-quality multimodal data is a widely concerning issue, especially in safety-critical applications. However, multimodal noise poses a major challenge in this domain and leads existing methods to suffer from two key limitations. First, they struggle to reliably remove heterogeneous data noise, hindering robust multimodal representation learning. Second, they exhibit limited adaptability and generalization when encountering previously unseen noise. To address these issues, we propose Test-time Adaptive Hierarchical Co-enhanced Denoising Network (TAHCD). On one hand, TAHCD introduces the Adaptive Stable Subspace Alignment and Sample-Adaptive Confidence Alignment to reliably remove heterogeneous noise. They account for noise at both global and instance levels and enable jointly removal of modality-specific and cross-modality noise, achieving robust learning. On the other hand, TAHCD introduces test-time cooperative enhancement, which adaptively updates the model in response to input noise in a label-free manner, improving adaptability and generalization. This is achieved by collaboratively enhancing the joint removal process of modality-specific and cross-modality noise across global and instance levels according to sample noise. Experiments on multiple benchmarks demonstrate that the proposed method achieves superior classification performance, robustness, and generalization compared with state-of-the-art reliable multimodal learning approaches.
Women are twice as likely as men to face online harassment due to their gender. Despite recent advances in multimodal content moderation, most approaches still overlook the social dynamics behind this phenomenon, where perpetrators reinforce prejudices and group identity within like-minded communities. Graph-based methods offer a promising way to capture such interactions, yet existing solutions remain limited by heuristic graph construction, shallow modality fusion, and instance-level reasoning. In this work, we present MemeWeaver, an end-to-end trainable multimodal framework for detecting sexism and misogyny through a novel inter-meme graph reasoning mechanism. We systematically evaluate multiple visual--textual fusion strategies and show that our approach consistently outperforms state-of-the-art baselines on the MAMI and EXIST benchmarks, while achieving faster training convergence. Further analyses reveal that the learned graph structure captures semantically meaningful patterns, offering valuable insights into the relational nature of online hate.
Deep reinforcement learning (DRL) has shown great promise in addressing multi-objective combinatorial optimization problems (MOCOPs). Nevertheless, the robustness of these learning-based solvers has remained insufficiently explored, especially across diverse and complex problem distributions. In this paper, we propose a unified robustness-oriented framework for preference-conditioned DRL solvers for MOCOPs. Within this framework, we develop a preference-based adversarial attack to generate hard instances that expose solver weaknesses, and quantify the attack impact by the resulting degradation on Pareto-front quality. We further introduce a defense strategy that integrates hardness-aware preference selection into adversarial training to reduce overfitting to restricted preference regions and improve out-of-distribution performance. The experimental results on multi-objective traveling salesman problem (MOTSP), multi-objective capacitated vehicle routing problem (MOCVRP), and multi-objective knapsack problem (MOKP) verify that our attack method successfully learns hard instances for different solvers. Furthermore, our defense method significantly strengthens the robustness and generalizability of neural solvers, delivering superior performance on hard or out-of-distribution instances.
Feature attribution is the dominant paradigm for explaining deep neural networks. However, most existing methods only loosely reflect the model's prediction-making process, thereby merely white-painting the black box. We argue that explanatory alignment is a key aspect of trustworthiness in prediction tasks: explanations must be directly linked to predictions, rather than serving as post-hoc rationalizations. We present model readability as a design principle enabling alignment, and PiNets as a modeling framework to pursue it in a deep learning context. PiNets are pseudo-linear networks that produce instance-wise linear predictions in an arbitrary feature space, making them linearly readable. We illustrate their use on image classification and segmentation tasks, demonstrating how PiNets produce explanations that are faithful across multiple criteria in addition to alignment.
The field of algorithms with predictions aims to improve algorithm performance by integrating machine learning predictions into algorithm design. A central question in this area is how predictions can improve performance, and a key aspect of this analysis is the role of prediction accuracy. In this context, prediction accuracy is defined as a guaranteed probability that an instance drawn from the distribution belongs to the predicted set. As a performance measure that incorporates prediction accuracy, we focus on the distributionally-robust competitive ratio (DRCR), introduced by Sun et al.~(ICML 2024). The DRCR is defined as the expected ratio between the algorithm's cost and the optimal cost, where the expectation is taken over the worst-case instance distribution that satisfies the given prediction and accuracy requirement. A known structural property is that, for any fixed algorithm, the DRCR decreases linearly as prediction accuracy increases. Building on this result, we establish that the optimal DRCR value (i.e., the infimum over all algorithms) is a monotone and concave function of prediction accuracy. We further generalize the DRCR framework to a multiple-prediction setting and show that monotonicity and concavity are preserved in this setting. Finally, we apply our results to the ski rental problem, a benchmark problem in online optimization, to identify the conditions on prediction accuracies required for the optimal DRCR to attain a target value. Moreover, we provide a method for computing the critical accuracy, defined as the minimum accuracy required for the optimal DRCR to strictly improve upon the performance attainable without any accuracy guarantee.
In recent years, the integration of pre-trained foundational models with multiple instance learning (MIL) has improved diagnostic accuracy in computational pathology. However, existing MIL methods focus on optimizing feature extractors and aggregation strategies while overlooking the complex semantic relationships among instances within whole slide image (WSI). Although Transformer-based MIL approaches aiming to model instance dependencies, the quadratic computational complexity limits their scalability to large-scale WSIs. Moreover, due to the pronounced variations in tumor region scales across different WSIs, existing Transformer-based methods employing fixed-scale attention mechanisms face significant challenges in precisely capturing local instance correlations and fail to account for the distance-based decay effect of patch relevance. To address these challenges, we propose window scale decay MIL (WSD-MIL), designed to enhance the capacity to model tumor regions of varying scales while improving computational efficiency. WSD-MIL comprises: 1) a window scale decay based attention module, which employs a cluster-based sampling strategy to reduce computational costs while progressively decaying attention window-scale to capture local instance relationships at varying scales; and 2) a squeeze-and-excitation based region gate module, which dynamically adjusts window weights to enhance global information modeling. Experimental results demonstrate that WSD-MIL achieves state-of-the-art performance on the CAMELYON16 and TCGA-BRCA datasets while reducing 62% of the computational memory. The code will be publicly available.
We introduce PathBench-MIL, an open-source AutoML and benchmarking framework for multiple instance learning (MIL) in histopathology. The system automates end-to-end MIL pipeline construction, including preprocessing, feature extraction, and MIL-aggregation, and provides reproducible benchmarking of dozens of MIL models and feature extractors. PathBench-MIL integrates visualization tooling, a unified configuration system, and modular extensibility, enabling rapid experimentation and standardization across datasets and tasks. PathBench-MIL is publicly available at https://github.com/Sbrussee/PathBench-MIL
Predicting breast cancer recurrence risk is a critical clinical challenge. This study investigates the potential of computational pathology to stratify patients using deep learning on routine Hematoxylin and Eosin (H&E) stained whole-slide images (WSIs). We developed and compared three Multiple Instance Learning (MIL) frameworks -- CLAM-SB, ABMIL, and ConvNeXt-MIL-XGBoost -- on an in-house dataset of 210 patient cases. The models were trained to predict 5-year recurrence risk, categorized into three tiers (low, medium, high), with ground truth labels established by the 21-gene Recurrence Score. Features were extracted using the UNI and CONCH pre-trained models. In a 5-fold cross-validation, the modified CLAM-SB model demonstrated the strongest performance, achieving a mean Area Under the Curve (AUC) of 0.836 and a classification accuracy of 76.2%. Our findings demonstrate the feasibility of using deep learning on standard histology slides for automated, genomics-correlated risk stratification, highlighting a promising pathway toward rapid and cost-effective clinical decision support.
Multiple Instance Learning (MIL) has enabled weakly supervised analysis of whole-slide images (WSIs) in computational pathology. However, traditional MIL approaches often lose crucial contextual information, while transformer-based variants, though more expressive, suffer from quadratic complexity and redundant computations. To address these limitations, we propose HookMIL, a context-aware and computationally efficient MIL framework that leverages compact, learnable hook tokens for structured contextual aggregation. These tokens can be initialized from (i) key-patch visual features, (ii) text embeddings from vision-language pathology models, and (iii) spatially grounded features from spatial transcriptomics-vision models. This multimodal initialization enables Hook Tokens to incorporate rich textual and spatial priors, accelerating convergence and enhancing representation quality. During training, Hook tokens interact with instances through bidirectional attention with linear complexity. To further promote specialization, we introduce a Hook Diversity Loss that encourages each token to focus on distinct histopathological patterns. Additionally, a hook-to-hook communication mechanism refines contextual interactions while minimizing redundancy. Extensive experiments on four public pathology datasets demonstrate that HookMIL achieves state-of-the-art performance, with improved computational efficiency and interpretability. Codes are available at https://github.com/lingxitong/HookMIL.