Abstract:Conventional reinforcement learning (RL) ap proaches often struggle to learn effective policies under sparse reward conditions, necessitating the manual design of complex, task-specific reward functions. To address this limitation, rein forcement learning from human feedback (RLHF) has emerged as a promising strategy that complements hand-crafted rewards with human-derived evaluation signals. However, most existing RLHF methods depend on explicit feedback mechanisms such as button presses or preference labels, which disrupt the natural interaction process and impose a substantial cognitive load on the user. We propose a novel reinforcement learning from implicit human feedback (RLIHF) framework that utilizes non-invasive electroencephalography (EEG) signals, specifically error-related potentials (ErrPs), to provide continuous, implicit feedback without requiring explicit user intervention. The proposed method adopts a pre-trained decoder to transform raw EEG signals into probabilistic reward components, en abling effective policy learning even in the presence of sparse external rewards. We evaluate our approach in a simulation environment built on the MuJoCo physics engine, using a Kinova Gen2 robotic arm to perform a complex pick-and-place task that requires avoiding obstacles while manipulating target objects. The results show that agents trained with decoded EEG feedback achieve performance comparable to those trained with dense, manually designed rewards. These findings validate the potential of using implicit neural feedback for scalable and human-aligned reinforcement learning in interactive robotics.
Abstract:Electroencephalography (EEG) is a fundamental modality for cognitive state monitoring in brain-computer interfaces (BCIs). However, it is highly susceptible to intrinsic signal errors and human-induced labeling errors, which lead to label noise and ultimately degrade model performance. To enhance EEG learning, multimodal knowledge distillation (KD) has been explored to transfer knowledge from visual models with rich representations to EEG-based models. Nevertheless, KD faces two key challenges: modality gap and soft label misalignment. The former arises from the heterogeneous nature of EEG and visual feature spaces, while the latter stems from label inconsistencies that create discrepancies between ground truth labels and distillation targets. This paper addresses semantic uncertainty caused by ambiguous features and weakly defined labels. We propose a novel cross-modal knowledge distillation framework that mitigates both modality and label inconsistencies. It aligns feature semantics through a prototype-based similarity module and introduces a task-specific distillation head to resolve label-induced inconsistency in supervision. Experimental results demonstrate that our approach improves EEG-based emotion regression and classification performance, outperforming both unimodal and multimodal baselines on a public multimodal dataset. These findings highlight the potential of our framework for BCI applications.
Abstract:With recent advancements in text-to-image (T2I) models, effectively generating multiple instances within a single image prompt has become a crucial challenge. Existing methods, while successful in generating positions of individual instances, often struggle to account for relationship discrepancy and multiple attributes leakage. To address these limitations, this paper proposes the relation-aware disentangled learning (RaDL) framework. RaDL enhances instance-specific attributes through learnable parameters and generates relation-aware image features via Relation Attention, utilizing action verbs extracted from the global prompt. Through extensive evaluations on benchmarks such as COCO-Position, COCO-MIG, and DrawBench, we demonstrate that RaDL outperforms existing methods, showing significant improvements in positional accuracy, multiple attributes consideration, and the relationships between instances. Our results present RaDL as the solution for generating images that consider both the relationships and multiple attributes of each instance within the multi-instance image.
Abstract:Recently, personalized portrait generation with a text-to-image diffusion model has significantly advanced with Textual Inversion, emerging as a promising approach for creating high-fidelity personalized images. Despite its potential, current Textual Inversion methods struggle to maintain consistent facial identity due to semantic misalignments between textual and visual embedding spaces regarding identity. We introduce ID-EA, a novel framework that guides text embeddings to align with visual identity embeddings, thereby improving identity preservation in a personalized generation. ID-EA comprises two key components: the ID-driven Enhancer (ID-Enhancer) and the ID-conditioned Adapter (ID-Adapter). First, the ID-Enhancer integrates identity embeddings with a textual ID anchor, refining visual identity embeddings derived from a face recognition model using representative text embeddings. Then, the ID-Adapter leverages the identity-enhanced embedding to adapt the text condition, ensuring identity preservation by adjusting the cross-attention module in the pre-trained UNet model. This process encourages the text features to find the most related visual clues across the foreground snippets. Extensive quantitative and qualitative evaluations demonstrate that ID-EA substantially outperforms state-of-the-art methods in identity preservation metrics while achieving remarkable computational efficiency, generating personalized portraits approximately 15 times faster than existing approaches.
Abstract:Conventional semi-supervised learning (SSL) ideally assumes that labeled and unlabeled data share an identical class distribution, however in practice, this assumption is easily violated, as unlabeled data often includes unknown class data, i.e., outliers. The outliers are treated as noise, considerably degrading the performance of SSL models. To address this drawback, we propose a novel framework, Diversify and Conquer (DAC), to enhance SSL robustness in the context of open-set semi-supervised learning. In particular, we note that existing open-set SSL methods rely on prediction discrepancies between inliers and outliers from a single model trained on labeled data. This approach can be easily failed when the labeled data is insufficient, leading to performance degradation that is worse than naive SSL that do not account for outliers. In contrast, our approach exploits prediction disagreements among multiple models that are differently biased towards the unlabeled distribution. By leveraging the discrepancies arising from training on unlabeled data, our method enables robust outlier detection even when the labeled data is underspecified. Our key contribution is constructing a collection of differently biased models through a single training process. By encouraging divergent heads to be differently biased towards outliers while making consistent predictions for inliers, we exploit the disagreement among these heads as a measure to identify unknown concepts. Our code is available at https://github.com/heejokong/DivCon.
Abstract:Recent advances in expressive text-to-speech (TTS) have introduced diverse methods based on style embedding extracted from reference speech. However, synthesizing high-quality expressive speech remains challenging. We propose Spotlight-TTS, which exclusively emphasizes style via voiced-aware style extraction and style direction adjustment. Voiced-aware style extraction focuses on voiced regions highly related to style while maintaining continuity across different speech regions to improve expressiveness. We adjust the direction of the extracted style for optimal integration into the TTS model, which improves speech quality. Experimental results demonstrate that Spotlight-TTS achieves superior performance compared to baseline models in terms of expressiveness, overall speech quality, and style transfer capability. Our audio samples are publicly available.
Abstract:Controlling singing style is crucial for achieving an expressive and natural singing voice. Among the various style factors, vibrato plays a key role in conveying emotions and enhancing musical depth. However, modeling vibrato remains challenging due to its dynamic nature, making it difficult to control in singing voice conversion. To address this, we propose VibESVC, a controllable singing voice conversion model that explicitly extracts and manipulates vibrato using discrete wavelet transform. Unlike previous methods that model vibrato implicitly, our approach decomposes the F0 contour into frequency components, enabling precise transfer. This allows vibrato control for enhanced flexibility. Experimental results show that VibE-SVC effectively transforms singing styles while preserving speaker similarity. Both subjective and objective evaluations confirm high-quality conversion.
Abstract:Speech emotion recognition predicts a speaker's emotional state from speech signals using discrete labels or continuous dimensions such as arousal, valence, and dominance (VAD). We propose EmoSphere-SER, a joint model that integrates spherical VAD region classification to guide VAD regression for improved emotion prediction. In our framework, VAD values are transformed into spherical coordinates that are divided into multiple spherical regions, and an auxiliary classification task predicts which spherical region each point belongs to, guiding the regression process. Additionally, we incorporate a dynamic weighting scheme and a style pooling layer with multi-head self-attention to capture spectral and temporal dynamics, further boosting performance. This combined training strategy reinforces structured learning and improves prediction consistency. Experimental results show that our approach exceeds baseline methods, confirming the validity of the proposed framework.
Abstract:Cross-speaker emotion transfer in speech synthesis relies on extracting speaker-independent emotion embeddings for accurate emotion modeling without retaining speaker traits. However, existing timbre compression methods fail to fully separate speaker and emotion characteristics, causing speaker leakage and degraded synthesis quality. To address this, we propose DiEmo-TTS, a self-supervised distillation method to minimize emotional information loss and preserve speaker identity. We introduce cluster-driven sampling and information perturbation to preserve emotion while removing irrelevant factors. To facilitate this process, we propose an emotion clustering and matching approach using emotional attribute prediction and speaker embeddings, enabling generalization to unlabeled data. Additionally, we designed a dual conditioning transformer to integrate style features better. Experimental results confirm the effectiveness of our method in learning speaker-irrelevant emotion embeddings.
Abstract:In this paper, we examine a key limitation in query-based detectors for temporal action detection (TAD), which arises from their direct adaptation of originally designed architectures for object detection. Despite the effectiveness of the existing models, they struggle to fully address the unique challenges of TAD, such as the redundancy in multi-scale features and the limited ability to capture sufficient temporal context. To address these issues, we propose a multi-dilated gated encoder and central-adjacent region integrated decoder for temporal action detection transformer (DiGIT). Our approach replaces the existing encoder that consists of multi-scale deformable attention and feedforward network with our multi-dilated gated encoder. Our proposed encoder reduces the redundant information caused by multi-level features while maintaining the ability to capture fine-grained and long-range temporal information. Furthermore, we introduce a central-adjacent region integrated decoder that leverages a more comprehensive sampling strategy for deformable cross-attention to capture the essential information. Extensive experiments demonstrate that DiGIT achieves state-of-the-art performance on THUMOS14, ActivityNet v1.3, and HACS-Segment. Code is available at: https://github.com/Dotori-HJ/DiGIT