Abstract:Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
Abstract:Abstractive compression utilizes smaller langauge models to condense query-relevant context, reducing computational costs in retrieval-augmented generation (RAG). However,retrieved documents often include information that is either irrelevant to answering the query or misleading due to factual incorrect content, despite having high relevance scores. This behavior indicates that abstractive compressors are more likely to omit important information essential for the correct answer, especially in long contexts where attention dispersion occurs. To address this issue, we categorize retrieved documents in a more fine-grained manner and propose Abstractive Compression Robust against Noise (ACoRN), which introduces two novel training steps. First, we use offline data augmentation on the training dataset to enhance compressor robustness against two distinct types of retrieval noise. Second, since the language modelbased compressor cannot fully utilize information from multiple retrieved documents and exhibits positional bias, we perform finetuning to generate summaries centered around key information that directly supports the correct answer. Our experiments demonstrate that T5-large, trained with ACoRN as a compressor, improves EM and F1 scores while preserving the answer string, which could serve as direct evidence. ACoRN excels on datasets with many accuracy-reducing documents, making it highly useful in real-world scenarios.
Abstract:Large Language Models (LLMs) trained on extensive datasets often learn sensitive information, which raises significant social and legal concerns under principles such as the "Right to be forgotten." Retraining entire models from scratch to remove undesired information is both costly and impractical. Furthermore, existing single-domain unlearning methods fail to address multi-domain scenarios, where knowledge is interwoven across domains such as privacy and copyright, creating overlapping representations that lead to excessive knowledge removal or degraded performance. To tackle these issues, we propose GRAIL (GRadient-based AdaptIve unLearning), a novel multi-domain unlearning framework. GRAIL leverages gradient information from multiple domains to precisely distinguish the unlearning scope from the retention scope, and applies an adaptive parameter-wise localization strategy to selectively remove targeted knowledge while preserving critical parameters for each domain. Experimental results on unlearning benchmarks show that GRAIL achieves unlearning success on par with the existing approaches, while also demonstrating up to 17% stronger knowledge retention success compared to the previous state-of-art method. Our findings establish a new paradigm for effectively managing and regulating sensitive information in large-scale pre-trained language models.
Abstract:Recently, there has been a growing demand for conversational speech synthesis (CSS) that generates more natural speech by considering the conversational context. To address this, we introduce JELLY, a novel CSS framework that integrates emotion recognition and context reasoning for generating appropriate speech in conversation by fine-tuning a large language model (LLM) with multiple partial LoRA modules. We propose an Emotion-aware Q-former encoder, which enables the LLM to perceive emotions in speech. The encoder is trained to align speech emotions with text, utilizing datasets of emotional speech. The entire model is then fine-tuned with conversational speech data to infer emotional context for generating emotionally appropriate speech in conversation. Our experimental results demonstrate that JELLY excels in emotional context modeling, synthesizing speech that naturally aligns with conversation, while mitigating the scarcity of emotional conversational speech datasets.
Abstract:Referring video object segmentation aims to segment objects within a video corresponding to a given text description. Existing transformer-based temporal modeling approaches face challenges related to query inconsistency and the limited consideration of context. Query inconsistency produces unstable masks of different objects in the middle of the video. The limited consideration of context leads to the segmentation of incorrect objects by failing to adequately account for the relationship between the given text and instances. To address these issues, we propose the Multi-context Temporal Consistency Module (MTCM), which consists of an Aligner and a Multi-Context Enhancer (MCE). The Aligner removes noise from queries and aligns them to achieve query consistency. The MCE predicts text-relevant queries by considering multi-context. We applied MTCM to four different models, increasing performance across all of them, particularly achieving 47.6 J&F on the MeViS. Code is available at https://github.com/Choi58/MTCM.
Abstract:Bearing in mind the limited parametric knowledge of Large Language Models (LLMs), retrieval-augmented generation (RAG) which supplies them with the relevant external knowledge has served as an approach to mitigate the issue of hallucinations to a certain extent. However, uniformly retrieving supporting context makes response generation source-inefficient, as triggering the retriever is not always necessary, or even inaccurate, when a model gets distracted by noisy retrieved content and produces an unhelpful answer. Motivated by these issues, we introduce Semantic Uncertainty Guided Adaptive Retrieval (SUGAR), where we leverage context-based entropy to actively decide whether to retrieve and to further determine between single-step and multi-step retrieval. Our empirical results show that selective retrieval guided by semantic uncertainty estimation improves the performance across diverse question answering tasks, as well as achieves a more efficient inference.
Abstract:Audio super-resolution is challenging owing to its ill-posed nature. Recently, the application of diffusion models in audio super-resolution has shown promising results in alleviating this challenge. However, diffusion-based models have limitations, primarily the necessity for numerous sampling steps, which causes significantly increased latency when synthesizing high-quality audio samples. In this paper, we propose FLowHigh, a novel approach that integrates flow matching, a highly efficient generative model, into audio super-resolution. We also explore probability paths specially tailored for audio super-resolution, which effectively capture high-resolution audio distributions, thereby enhancing reconstruction quality. The proposed method generates high-fidelity, high-resolution audio through a single-step sampling process across various input sampling rates. The experimental results on the VCTK benchmark dataset demonstrate that FLowHigh achieves state-of-the-art performance in audio super-resolution, as evaluated by log-spectral distance and ViSQOL while maintaining computational efficiency with only a single-step sampling process.
Abstract:In this paper, we propose a conceptual framework for personalized brain-computer interface (BCI) applications, which can offer an enhanced user experience by customizing services to individual preferences and needs, based on endogenous electroencephalography (EEG) paradigms including motor imagery (MI), speech imagery (SI), and visual imagery. The framework includes two essential components: user identification and intention classification, which enable personalized services by identifying individual users and recognizing their intended actions through EEG signals. We validate the feasibility of our framework using a private EEG dataset collected from eight subjects, employing the ShallowConvNet architecture to decode EEG features. The experimental results demonstrate that user identification achieved an average classification accuracy of 0.995, while intention classification achieved 0.47 accuracy across all paradigms, with MI demonstrating the best performance. These findings indicate that EEG signals can effectively support personalized BCI applications, offering robust identification and reliable intention decoding, especially for MI and SI.
Abstract:Interpreting human neural signals to decode static speech intentions such as text or images and dynamic speech intentions such as audio or video is showing great potential as an innovative communication tool. Human communication accompanies various features, such as articulatory movements, facial expressions, and internal speech, all of which are reflected in neural signals. However, most studies only generate short or fragmented outputs, while providing informative communication by leveraging various features from neural signals remains challenging. In this study, we introduce a dynamic neural communication method that leverages current computer vision and brain-computer interface technologies. Our approach captures the user's intentions from neural signals and decodes visemes in short time steps to produce dynamic visual outputs. The results demonstrate the potential to rapidly capture and reconstruct lip movements during natural speech attempts from human neural signals, enabling dynamic neural communication through the convergence of computer vision and brain--computer interface.
Abstract:Existing multimodal retrieval systems often rely on disjointed models for image comprehension, such as object detectors and caption generators, leading to cumbersome implementations and training processes. To overcome this limitation, we propose an end-to-end retrieval system, Ret-XKnow, to endow a text retriever with the ability to understand multimodal queries via dynamic modality interaction. Ret-XKnow leverages a partial convolution mechanism to focus on visual information relevant to the given textual query, thereby enhancing multimodal query representations. To effectively learn multimodal interaction, we also introduce the Visual Dialogue-to-Retrieval (ViD2R) dataset automatically constructed from visual dialogue datasets. Our dataset construction process ensures that the dialogues are transformed into suitable information retrieval tasks using a text retriever. We demonstrate that our approach not only significantly improves retrieval performance in zero-shot settings but also achieves substantial improvements in fine-tuning scenarios. Our code is publicly available: https://github.com/yeongjoonJu/Ret_XKnow.