Information extraction is the process of automatically extracting structured information from unstructured text data.
Extracting structured data from the web is often a trade-off between the brittle nature of manual heuristics and the prohibitive cost of Large Language Models. We introduce AXE (Adaptive X-Path Extractor), a pipeline that rethinks this process by treating the HTML DOM as a tree that needs pruning rather than just a wall of text to be read. AXE uses a specialized "pruning" mechanism to strip away boilerplate and irrelevant nodes, leaving behind a distilled, high-density context that allows a tiny 0.6B LLM to generate precise, structured outputs. To keep the model honest, we implement Grounded XPath Resolution (GXR), ensuring every extraction is physically traceable to a source node. Despite its low footprint, AXE achieves state-of-the-art zero-shot performance, outperforming several much larger, fully-trained alternatives with an F1 score of 88.1% on the SWDE dataset. By releasing our specialized adaptors, we aim to provide a practical, cost-effective path for large-scale web information extraction.
Background: High-level system testing of applications that use data from e-Government services as input requires test data that is real-life-like but where the privacy of personal information is guaranteed. Applications with such strong requirement include information exchange between countries, medicine, banking, etc. This review aims to synthesize the current state-of-the-practice in this domain. Objectives: The objective of this Systematic Review is to identify existing approaches for creating and evolving synthetic test data without using real-life raw data. Methods: We followed well-known methodologies for conducting systematic literature reviews, including the ones from Kitchenham as well as guidelines for analysing the limitations of our review and its threats to validity. Results: A variety of methods and tools exist for creating privacy-preserving test data. Our search found 1,013 publications in IEEE Xplore, ACM Digital Library, and SCOPUS. We extracted data from 75 of those publications and identified 37 approaches that answer our research question partly. A common prerequisite for using these methods and tools is direct access to real-life data for data anonymization or synthetic test data generation. Nine existing synthetic test data generation approaches were identified that were closest to answering our research question. Nevertheless, further work would be needed to add the ability to evolve synthetic test data to the existing approaches. Conclusions: None of the publications really covered our requirements completely, only partially. Synthetic test data evolution is a field that has not received much attention from researchers but needs to be explored in Digital Government Solutions, especially since new legal regulations are being placed in force in many countries.
Traditional deep learning models often lack annotated data, especially in cross-domain applications such as anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To address this challenge, we propose Multi-AD, a convolutional neural network (CNN) model for robust unsupervised anomaly detection across medical and industrial images. Our approach employs the squeeze-and-excitation (SE) block to enhance feature extraction via channel-wise attention, enabling the model to focus on the most relevant features and detect subtle anomalies. Knowledge distillation (KD) transfers informative features from the teacher to the student model, enabling effective learning of the differences between normal and anomalous data. Then, the discriminator network further enhances the model's capacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale features, the student model can detect anomalies of varying sizes. The teacher-student (T-S) architecture ensures consistent representation of high-dimensional features while adapting them to enhance anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across multiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art models, achieving the best average AUROC for both image-level (81.4% for medical and 99.6% for industrial) and pixel-level (97.0% for medical and 98.4% for industrial) tasks, making it effective for real-world applications.
Fringe projection profilometry-based 3-D reconstruction of objects with high reflectivity and low surface roughness remains a significant challenge. When measuring such glossy surfaces, specular reflection and indirect illumination often lead to severe distortion or loss of the projected fringe patterns. To address these issues, we propose a latent diffusion-based structured light for reflective objects (LD-SLRO). Phase-shifted fringe images captured from highly reflective surfaces are first encoded to extract latent representations that capture surface reflectance characteristics. These latent features are then used as conditional inputs to a latent diffusion model, which probabilistically suppresses reflection-induced artifacts and recover lost fringe information, yielding high-quality fringe images. The proposed components, including the specular reflection encoder, time-variant channel affine layer, and attention modules, further improve fringe restoration quality. In addition, LD-SLRO provides high flexibility in configuring the input and output fringe sets. Experimental results demonstrate that the proposed method improves both fringe quality and 3-D reconstruction accuracy over state-of-the-art methods, reducing the average root-mean-squared error from 1.8176 mm to 0.9619 mm.
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
Humans acquire semantic object representations from egocentric visual streams with minimal supervision. Importantly, the visual system processes with high resolution only the center of its field of view and learns similar representations for visual inputs occurring close in time. This emphasizes slowly changing information around gaze locations. This study investigates the role of central vision and slowness learning in the formation of semantic object representations from human-like visual experience. We simulate five months of human-like visual experience using the Ego4D dataset and generate gaze coordinates with a state-of-the-art gaze prediction model. Using these predictions, we extract crops that mimic central vision and train a time-contrastive Self-Supervised Learning model on them. Our results show that combining temporal slowness and central vision improves the encoding of different semantic facets of object representations. Specifically, focusing on central vision strengthens the extraction of foreground object features, while considering temporal slowness, especially during fixational eye movements, allows the model to encode broader semantic information about objects. These findings provide new insights into the mechanisms by which humans may develop semantic object representations from natural visual experience.
Multi-Modal Image Fusion (MMIF) aims to combine images from different modalities to produce fused images, retaining texture details and preserving significant information. Recently, some MMIF methods incorporate frequency domain information to enhance spatial features. However, these methods typically rely on simple serial or parallel spatial-frequency fusion without interaction. In this paper, we propose a novel Interactive Spatial-Frequency Fusion Mamba (ISFM) framework for MMIF. Specifically, we begin with a Modality-Specific Extractor (MSE) to extract features from different modalities. It models long-range dependencies across the image with linear computational complexity. To effectively leverage frequency information, we then propose a Multi-scale Frequency Fusion (MFF). It adaptively integrates low-frequency and high-frequency components across multiple scales, enabling robust representations of frequency features. More importantly, we further propose an Interactive Spatial-Frequency Fusion (ISF). It incorporates frequency features to guide spatial features across modalities, enhancing complementary representations. Extensive experiments are conducted on six MMIF datasets. The experimental results demonstrate that our ISFM can achieve better performances than other state-of-the-art methods. The source code is available at https://github.com/Namn23/ISFM.
Memory emerges as the core module in the Large Language Model (LLM)-based agents for long-horizon complex tasks (e.g., multi-turn dialogue, game playing, scientific discovery), where memory can enable knowledge accumulation, iterative reasoning and self-evolution. Among diverse paradigms, graph stands out as a powerful structure for agent memory due to the intrinsic capabilities to model relational dependencies, organize hierarchical information, and support efficient retrieval. This survey presents a comprehensive review of agent memory from the graph-based perspective. First, we introduce a taxonomy of agent memory, including short-term vs. long-term memory, knowledge vs. experience memory, non-structural vs. structural memory, with an implementation view of graph-based memory. Second, according to the life cycle of agent memory, we systematically analyze the key techniques in graph-based agent memory, covering memory extraction for transforming the data into the contents, storage for organizing the data efficiently, retrieval for retrieving the relevant contents from memory to support reasoning, and evolution for updating the contents in the memory. Third, we summarize the open-sourced libraries and benchmarks that support the development and evaluation of self-evolving agent memory. We also explore diverse application scenarios. Finally, we identify critical challenges and future research directions. This survey aims to offer actionable insights to advance the development of more efficient and reliable graph-based agent memory systems. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphMemory.
Large language models (LLMs) are advancing rapidly in medical NLP, yet Traditional Chinese Medicine (TCM) with its distinctive ontology, terminology, and reasoning patterns requires domain-faithful evaluation. Existing TCM benchmarks are fragmented in coverage and scale and rely on non-unified or generation-heavy scoring that hinders fair comparison. We present the LingLanMiDian (LingLan) benchmark, a large-scale, expert-curated, multi-task suite that unifies evaluation across knowledge recall, multi-hop reasoning, information extraction, and real-world clinical decision-making. LingLan introduces a consistent metric design, a synonym-tolerant protocol for clinical labels, a per-dataset 400-item Hard subset, and a reframing of diagnosis and treatment recommendation into single-choice decision recognition. We conduct comprehensive, zero-shot evaluations on 14 leading open-source and proprietary LLMs, providing a unified perspective on their strengths and limitations in TCM commonsense knowledge understanding, reasoning, and clinical decision support; critically, the evaluation on Hard subset reveals a substantial gap between current models and human experts in TCM-specialized reasoning. By bridging fundamental knowledge and applied reasoning through standardized evaluation, LingLan establishes a unified, quantitative, and extensible foundation for advancing TCM LLMs and domain-specific medical AI research. All evaluation data and code are available at https://github.com/TCMAI-BJTU/LingLan and http://tcmnlp.com.