Information extraction is the process of automatically extracting structured information from unstructured text data.
In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts while employing a dual-time modeling that distinguishes when information is observed from when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~17% better stability, and over 90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.
Cross-view localization and synthesis are two fundamental tasks in cross-view visual understanding, which deals with cross-view datasets: overhead (satellite or aerial) and ground-level imagery. These tasks have gained increasing attention due to their broad applications in autonomous navigation, urban planning, and augmented reality. Cross-view localization aims to estimate the geographic position of ground-level images based on information provided by overhead imagery while cross-view synthesis seeks to generate ground-level images based on information from the overhead imagery. Both tasks remain challenging due to significant differences in viewing perspective, resolution, and occlusion, which are widely embedded in cross-view datasets. Recent years have witnessed rapid progress driven by the availability of large-scale datasets and novel approaches. Typically, cross-view localization is formulated as an image retrieval problem where ground-level features are matched with tiled overhead images feature, extracted by convolutional neural networks (CNNs) or vision transformers (ViTs) for cross-view feature embedding. Cross-view synthesis, on the other hand, seeks to generate ground-level views based on information from overhead imagery, generally using generative adversarial networks (GANs) or diffusion models. This paper presents a comprehensive survey of advances in cross-view localization and synthesis, reviewing widely used datasets, highlighting key challenges, and providing an organized overview of state-of-the-art techniques. Furthermore, it discusses current limitations, offers comparative analyses, and outlines promising directions for future research. We also include the project page via https://github.com/GDAOSU/Awesome-Cross-View-Methods.
Human Activity Recognition (HAR) via Wi-Fi Channel State Information (CSI) presents a privacy-preserving, contactless sensing approach suitable for smart homes, healthcare monitoring, and mobile IoT systems. However, existing methods often encounter computational inefficiency, high latency, and limited feasibility within resource-constrained, embedded mobile edge environments. This paper proposes STAR (Sensing Technology for Activity Recognition), an edge-AI-optimized framework that integrates a lightweight neural architecture, adaptive signal processing, and hardware-aware co-optimization to enable real-time, energy-efficient HAR on low-power embedded devices. STAR incorporates a streamlined Gated Recurrent Unit (GRU)-based recurrent neural network, reducing model parameters by 33% compared to conventional LSTM models while maintaining effective temporal modeling capability. A multi-stage pre-processing pipeline combining median filtering, 8th-order Butterworth low-pass filtering, and Empirical Mode Decomposition (EMD) is employed to denoise CSI amplitude data and extract spatial-temporal features. For on-device deployment, STAR is implemented on a Rockchip RV1126 processor equipped with an embedded Neural Processing Unit (NPU), interfaced with an ESP32-S3-based CSI acquisition module. Experimental results demonstrate a mean recognition accuracy of 93.52% across seven activity classes and 99.11% for human presence detection, utilizing a compact 97.6k-parameter model. INT8 quantized inference achieves a processing speed of 33 MHz with just 8% CPU utilization, delivering sixfold speed improvements over CPU-based execution. With sub-second response latency and low power consumption, the system ensures real-time, privacy-preserving HAR, offering a practical, scalable solution for mobile and pervasive computing environments.
Current large language models (LLMs) often suffer from hallucination issues, i,e, generating content that appears factual but is actually unreliable. A typical hallucination detection pipeline involves response decomposition (i.e., claim extraction), query generation, evidence collection (i.e., search or retrieval), and claim verification. However, existing methods exhibit limitations in the first two stages, such as context loss during claim extraction and low specificity in query generation, resulting in degraded performance across the hallucination detection pipeline. In this work, we introduce JointCQ https://github.com/pku0xff/JointCQ, a joint claim-and-query generation framework designed to construct an effective and efficient claim-query generator. Our framework leverages elaborately designed evaluation criteria to filter synthesized training data, and finetunes a language model for joint claim extraction and query generation, providing reliable and informative inputs for downstream search and verification. Experimental results demonstrate that our method outperforms previous methods on multiple open-domain QA hallucination detection benchmarks, advancing the goal of more trustworthy and transparent language model systems.
GRAP-MOT is a new approach for solving the person MOT problem dedicated to videos of closed areas with overlapping multi-camera views, where person occlusion frequently occurs. Our novel graph-weighted solution updates a person's identification label online based on tracks and the person's characteristic features. To find the best solution, we deeply investigated all elements of the MOT process, including feature extraction, tracking, and community search. Furthermore, GRAP-MOT is equipped with a person's position estimation module, which gives additional key information to the MOT method, ensuring better results than methods without position data. We tested GRAP-MOT on recordings acquired in a closed-area model and on publicly available real datasets that fulfil the requirement of a highly congested space, showing the superiority of our proposition. Finally, we analyzed existing metrics used to compare MOT algorithms and concluded that IDF1 is more adequate than MOTA in such comparisons. We made our code, along with the acquired dataset, publicly available.
Radio frequency (RF) fingerprinting techniques provide a promising supplement to cryptography-based approaches but rely on dedicated equipment to capture in-phase and quadrature (IQ) samples, hindering their wide adoption. Recent advances advocate easily obtainable channel state information (CSI) by commercial WiFi devices for lightweight RF fingerprinting, while falling short in addressing the challenges of coarse granularity of CSI measurements in an open-world setting. In this paper, we propose CSI2Q, a novel CSI fingerprinting system that achieves comparable performance to IQ-based approaches. Instead of extracting fingerprints directly from raw CSI measurements, CSI2Q first transforms frequency-domain CSI measurements into time-domain signals that share the same feature space with IQ samples. Then, we employ a deep auxiliary learning strategy to transfer useful knowledge from an IQ fingerprinting model to the CSI counterpart. Finally, the trained CSI model is combined with an OpenMax function to estimate the likelihood of unknown ones. We evaluate CSI2Q on one synthetic CSI dataset involving 85 devices and two real CSI datasets, including 10 and 25 WiFi routers, respectively. Our system achieves accuracy increases of at least 16% on the synthetic CSI dataset, 20% on the in-lab CSI dataset, and 17% on the in-the-wild CSI dataset.
Reconstructing visual stimuli from fMRI signals is a central challenge bridging machine learning and neuroscience. Recent diffusion-based methods typically map fMRI activity to a single high-level embedding, using it as fixed guidance throughout the entire generation process. However, this fixed guidance collapses hierarchical neural information and is misaligned with the stage-dependent demands of image reconstruction. In response, we propose MindHier, a coarse-to-fine fMRI-to-image reconstruction framework built on scale-wise autoregressive modeling. MindHier introduces three components: a Hierarchical fMRI Encoder to extract multi-level neural embeddings, a Hierarchy-to-Hierarchy Alignment scheme to enforce layer-wise correspondence with CLIP features, and a Scale-Aware Coarse-to-Fine Neural Guidance strategy to inject these embeddings into autoregression at matching scales. These designs make MindHier an efficient and cognitively-aligned alternative to diffusion-based methods by enabling a hierarchical reconstruction process that synthesizes global semantics before refining local details, akin to human visual perception. Extensive experiments on the NSD dataset show that MindHier achieves superior semantic fidelity, 4.67x faster inference, and more deterministic results than the diffusion-based baselines.
Cross-view geo-localization (CVGL) enables UAV localization by matching aerial images to geo-tagged satellite databases, which is critical for autonomous navigation in GNSS-denied environments. However, existing methods rely on resource-intensive fine-grained feature extraction and alignment, where multiple branches and modules significantly increase inference costs, limiting their deployment on edge devices. We propose Precision-Focused Efficient Design (PFED), a resource-efficient framework combining hierarchical knowledge transfer and multi-view representation refinement. This innovative method comprises two key components: 1) During training, Hierarchical Distillation paradigm for fast and accurate CVGL (HD-CVGL), coupled with Uncertainty-Aware Prediction Alignment (UAPA) to distill essential information and mitigate the data imbalance without incurring additional inference overhead. 2) During inference, an efficient Multi-view Refinement Module (MRM) leverages mutual information to filter redundant samples and effectively utilize the multi-view data. Extensive experiments show that PFED achieves state-of-the-art performance in both accuracy and efficiency, reaching 97.15\% Recall@1 on University-1652 while being over $5 \times$ more efficient in FLOPs and $3 \times$ faster than previous top methods. Furthermore, PFED runs at 251.5 FPS on the AGX Orin edge device, demonstrating its practical viability for real-time UAV applications. The project is available at https://github.com/SkyEyeLoc/PFED
This work, termed MH-LVC, presents a multi-hypothesis temporal prediction scheme that employs long- and short-term reference frames in a conditional residual video coding framework. Recent temporal context mining approaches to conditional video coding offer superior coding performance. However, the need to store and access a large amount of implicit contextual information extracted from past decoded frames in decoding a video frame poses a challenge due to excessive memory access. Our MH-LVC overcomes this issue by storing multiple long- and short-term reference frames but limiting the number of reference frames used at a time for temporal prediction to two. Our decoded frame buffer management allows the encoder to flexibly utilize the long-term key frames to mitigate temporal cascading errors and the short-term reference frames to minimize prediction errors. Moreover, our buffering scheme enables the temporal prediction structure to be adapted to individual input videos. While this flexibility is common in traditional video codecs, it has not been fully explored for learned video codecs. Extensive experiments show that the proposed method outperforms VTM-17.0 under the low-delay B configuration in terms of PSNR-RGB across commonly used test datasets, and performs comparably to the state-of-the-art learned codecs (e.g.~DCVC-FM) while requiring less decoded frame buffer and similar decoding time.
In the past decade, the adoption of compact 3D range sensors, such as LiDARs, has driven the developments of robust state-estimation pipelines, making them a standard sensor for aerial, ground, and space autonomy. Unfortunately, poor propagation of electromagnetic waves underwater, has limited the visibility-independent sensing options of underwater state-estimation to acoustic range sensors, which provide 2D information including, at-best, spatially ambiguous information. This paper, to the best of our knowledge, is the first study examining the performance, capacity, and opportunities arising from the recent introduction of the first compact 3D sonar. Towards that purpose, we introduce calibration procedures for extracting the extrinsics between the 3D sonar and a camera and we provide a study on acoustic response in different surfaces and materials. Moreover, we provide novel mapping and SLAM pipelines tested in deployments in underwater cave systems and other geometrically and acoustically challenging underwater environments. Our assessment showcases the unique capacity of 3D sonars to capture consistent spatial information allowing for detailed reconstructions and localization in datasets expanding to hundreds of meters. At the same time it highlights remaining challenges related to acoustic propagation, as found also in other acoustic sensors. Datasets collected for our evaluations would be released and shared with the community to enable further research advancements.