Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Information ecosystems increasingly shape how people internalize exposure to adverse digital experiences, raising concerns about the long-term consequences for information health. In modern search and recommendation systems, ranking and personalization policies play a central role in shaping such exposure and its long-term effects on users. To study these effects in a controlled setting, we present FrameRef, a large-scale dataset of 1,073,740 systematically reframed claims across five framing dimensions: authoritative, consensus, emotional, prestige, and sensationalist, and propose a simulation-based framework for modeling sequential information exposure and reinforcement dynamics characteristic of ranking and recommendation systems. Within this framework, we construct framing-sensitive agent personas by fine-tuning language models with framing-conditioned loss attenuation, inducing targeted biases while preserving overall task competence. Using Monte Carlo trajectory sampling, we show that small, systematic shifts in acceptance and confidence can compound over time, producing substantial divergence in cumulative information health trajectories. Human evaluation further confirms that FrameRef's generated framings measurably affect human judgment. Together, our dataset and framework provide a foundation for systematic information health research through simulation, complementing and informing responsible human-centered research. We release FrameRef, code, documentation, human evaluation data, and persona adapter models at https://github.com/infosenselab/frameref.
The web is littered with images, once created for human consumption and now increasingly interpreted by agents using vision-language models (VLMs). These agents make visual decisions at scale, deciding what to click, recommend, or buy. Yet, we know little about the structure of their visual preferences. We introduce a framework for studying this by placing VLMs in controlled image-based choice tasks and systematically perturbing their inputs. Our key idea is to treat the agent's decision function as a latent visual utility that can be inferred through revealed preference: choices between systematically edited images. Starting from common images, such as product photos, we propose methods for visual prompt optimization, adapting text optimization methods to iteratively propose and apply visually plausible modifications using an image generation model (such as in composition, lighting, or background). We then evaluate which edits increase selection probability. Through large-scale experiments on frontier VLMs, we demonstrate that optimized edits significantly shift choice probabilities in head-to-head comparisons. We develop an automatic interpretability pipeline to explain these preferences, identifying consistent visual themes that drive selection. We argue that this approach offers a practical and efficient way to surface visual vulnerabilities, safety concerns that might otherwise be discovered implicitly in the wild, supporting more proactive auditing and governance of image-based AI agents.
Gradual argumentation is a field of symbolic AI which is attracting attention for its ability to support transparent and contestable AI systems. It is considered a useful tool in domains such as decision-making, recommendation, debate analysis, and others. The outcomes in such domains are usually dependent on the arguments' base scores, which must be selected carefully. Often, this selection process requires user expertise and may not always be straightforward. On the other hand, organising the arguments by preference could simplify the task. In this work, we introduce \emph{Base Score Extraction Functions}, which provide a mapping from users' preferences over arguments to base scores. These functions can be applied to the arguments of a \emph{Bipolar Argumentation Framework} (BAF), supplemented with preferences, to obtain a \emph{Quantitative Bipolar Argumentation Framework} (QBAF), allowing the use of well-established computational tools in gradual argumentation. We outline the desirable properties of base score extraction functions, discuss some design choices, and provide an algorithm for base score extraction. Our method incorporates an approximation of non-linearities in human preferences to allow for better approximation of the real ones. Finally, we evaluate our approach both theoretically and experimentally in a robotics setting, and offer recommendations for selecting appropriate gradual semantics in practice.
In the era of responsible and sustainable AI, information retrieval and recommender systems must expand their scope beyond traditional accuracy metrics to incorporate environmental sustainability. However, this research line is severely limited by the lack of item-level environmental impact data in standard benchmarks. This paper introduces Eco-Amazon, a novel resource designed to bridge this gap. Our resource consists of an enriched version of three widely used Amazon datasets (i.e., Home, Clothing, and Electronics) augmented with Product Carbon Footprint (PCF) metadata. CO2e emission scores were generated using a zero-shot framework that leverages Large Language Models (LLMs) to estimate item-level PCF based on product attributes. Our contribution is three-fold: (i) the release of the Eco-Amazon datasets, enriching item metadata with PCF signals; (ii) the LLM-based PCF estimation script, which allows researchers to enrich any product catalogue and reproduce our results; (iii) a use case demonstrating how PCF estimates can be exploited to promote more sustainable products. By providing these environmental signals, Eco-Amazon enables the community to develop, benchmark, and evaluate the next generation of sustainable retrieval and recommendation models. Our resource is available at https://doi.org/10.5281/zenodo.18549130, while our source code is available at: http://github.com/giuspillo/EcoAmazon/.
Federated cross-domain recommendation (Federated CDR) aims to collaboratively learn personalized recommendation models across heterogeneous domains while preserving data privacy. Recently, large language model (LLM)-based recommendation models have demonstrated impressive performance by leveraging LLMs' strong reasoning capabilities and broad knowledge. However, adopting LLM-based recommendation models in Federated CDR scenarios introduces new challenges. First, there exists a risk of overfitting with domain-specific local adapters. The magnitudes of locally optimized parameter updates often vary across domains, causing biased aggregation and overfitting toward domain-specific distributions. Second, unlike traditional recommendation models (e.g., collaborative filtering, bipartite graph-based methods) that learn explicit and comparable user/item representations, LLMs encode knowledge implicitly through autoregressive text generation training. This poses additional challenges for effectively measuring the cross-domain similarities under heterogeneity. To address these challenges, we propose an LLM-based framework for federated cross-domain recommendation, FeDecider. Specifically, FeDecider tackles the challenge of scale-specific noise by disentangling each client's low-rank updates and sharing only their directional components. To handle the need for flexible and effective integration, each client further learns personalized weights that achieve the data-aware integration of updates from other domains. Extensive experiments across diverse datasets validate the effectiveness of our proposed FeDecider.
Off-policy evaluation (OPE) is essential for assessing ranking and recommendation systems without costly online interventions. Self-Normalised Inverse Propensity Scoring (SNIPS) is a standard tool for variance reduction in OPE, leveraging a multiplicative control variate. Recent advances in off-policy learning suggest that additive control variates (baseline corrections) may offer superior performance, yet theoretical guarantees for evaluation are lacking. This paper provides a definitive answer: we prove that $β^\star$-IPS, an estimator with an optimal additive baseline, asymptotically dominates SNIPS in Mean Squared Error. By analytically decomposing the variance gap, we show that SNIPS is asymptotically equivalent to using a specific -- but generally sub-optimal -- additive baseline. Our results theoretically justify shifting from self-normalisation to optimal baseline corrections for both ranking and recommendation.
Diffusion recommender systems achieve strong recommendation accuracy but often suffer from popularity bias, resulting in unequal item exposure. To address this shortcoming, we introduce A2G-DiffRec, a diffusion recommender that incorporates adaptive autoguidance, where the main model is guided by a less-trained version of itself. Instead of using a fixed guidance weight, A2G-DiffRec learns to adaptively weigh the outputs of the main and weak models during training, supervised by a popularity regularization that promotes balanced exposure across items with different popularity levels. Experimental results on the MovieLens-1M, Foursquare-Tokyo, and Music4All-Onion datasets show that A2G-DiffRec is effective in enhancing item-side fairness at a marginal cost of accuracy reduction compared to existing guided diffusion recommenders and other non-diffusion baselines.
Airbnb search must balance a worldwide, highly varied supply of homes with guests whose location, amenity, style, and price expectations differ widely. Meeting those expectations hinges on an efficient retrieval stage that surfaces only the listings a guest might realistically book, before resource intensive ranking models are applied to determine the best results. Unlike many recommendation engines, our system faces a distinctive challenge, location retrieval, that sits upstream of ranking and determines which geographic areas are queried in order to filter inventory to a candidate set. The preexisting approach employs a deep bayesian bandit based system to predict a rectangular retrieval bounds area that can be used for filtering. The purpose of this paper is to demonstrate the methodology, challenges, and impact of rearchitecting search to retrieve from the subset of most bookable high precision rectangular map cells defined by dividing the world into 25M uniform cells.
The purpose of predictive modeling on relational data is to predict future or missing values in a relational database, for example, future purchases of a user, risk of readmission of the patient, or the likelihood that a financial transaction is fraudulent. Typically powered by machine learning methods, predictive models are used in recommendations, financial fraud detection, supply chain optimization, and other systems, providing billions of predictions every day. However, training a machine learning model requires manual work to extract the required training examples - prediction entities and target labels - from the database, which is slow, laborious, and prone to mistakes. Here, we present the Predictive Query Language (PQL), an SQL-inspired declarative language for defining predictive tasks on relational databases. PQL allows specifying a predictive task in a single declarative query, enabling the automatic computation of training labels for a large variety of machine learning tasks, such as regression, classification, time-series forecasting, and recommender systems. PQL is already successfully integrated and used in a collection of use cases as part of a predictive AI platform. The versatility of the language can be demonstrated through its many ongoing use cases, including financial fraud, item recommendations, and workload prediction. We demonstrate its versatile design through two implementations; one for small-scale, low-latency use and one that can handle large-scale databases.
News recommendation plays a critical role in online news platforms by helping users discover relevant content. Cross-domain news recommendation further requires inferring user's underlying information needs from heterogeneous signals that often extend beyond direct news consumption. A key challenge lies in moving beyond surface-level behaviors to capture deeper, reusable user interests while maintaining scalability in large-scale production systems. In this paper, we present a reinforcement learning framework that trains large language models to generate high-quality lists of interest-driven news search queries from cross-domain user signals. We formulate query-list generation as a policy optimization problem and employ GRPO with multiple reward signals. We systematically study two compute dimensions: inference-time sampling and model capacity, and empirically observe consistent improvements with increased compute that exhibit scaling-like behavior. Finally, we perform on-policy distillation to transfer the learned policy from a large, compute-intensive teacher to a compact student model suitable for scalable deployment. Extensive offline experiments, ablation studies and large-scale online A/B tests in a production news recommendation system demonstrate consistent gains in both interest modeling quality and downstream recommendation performance.