Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
As information technology advances, education is moving from one-size-fits-all instruction toward personalized learning. However, most methods handle modeling, item selection, and feedback in isolation rather than as a closed loop. This leads to coarse or opaque student models, assumption-bound adaptivity that ignores diagnostic posteriors, and generic, non-actionable feedback. To address these limitations, this paper presents an end-to-end personalized learning agent, EduLoop-Agent, which integrates a Neural Cognitive Diagnosis model (NCD), a Bounded-Ability Estimation Computerized Adaptive Testing strategy (BECAT), and large language models (LLMs). The NCD module provides fine-grained estimates of students' mastery at the knowledge-point level; BECAT dynamically selects subsequent items to maximize relevance and learning efficiency; and LLMs convert diagnostic signals into structured, actionable feedback. Together, these components form a closed-loop framework of ``Diagnosis--Recommendation--Feedback.'' Experiments on the ASSISTments dataset show that the NCD module achieves strong performance on response prediction while yielding interpretable mastery assessments. The adaptive recommendation strategy improves item relevance and personalization, and the LLM-based feedback offers targeted study guidance aligned with identified weaknesses. Overall, the results indicate that the proposed design is effective and practically deployable, providing a feasible pathway to generating individualized learning trajectories in intelligent education.
Aesthetic-driven image cropping is crucial for applications like view recommendation and thumbnail generation, where visual appeal significantly impacts user engagement. A key factor in visual appeal is composition--the deliberate arrangement of elements within an image. Some methods have successfully incorporated compositional knowledge through evaluation-based and regression-based paradigms. However, evaluation-based methods lack globality while regression-based methods lack diversity. Recently, hybrid approaches that integrate both paradigms have emerged, bridging the gap between these two to achieve better diversity and globality. Notably, existing hybrid methods do not incorporate photographic composition guidance, a key attribute that defines photographic aesthetics. In this work, we introduce AesCrop, a composition-aware hybrid image-cropping model that integrates a VMamba image encoder, augmented with a novel Mamba Composition Attention Bias (MCAB) and a transformer decoder to perform end-to-end rank-based image cropping, generating multiple crops along with the corresponding quality scores. By explicitly encoding compositional cues into the attention mechanism, MCAB directs AesCrop to focus on the most compositionally salient regions. Extensive experiments demonstrate that AesCrop outperforms current state-of-the-art methods, delivering superior quantitative metrics and qualitatively more pleasing crops.
Explaining the output of a complex system, such as a Recommender System (RS), is becoming of utmost importance for both users and companies. In this paper we explore the idea that personalized explanations can be learned as recommendation themselves. There are plenty of online services where users can upload some photos, in addition to rating items. We assume that users take these photos to reinforce or justify their opinions about the items. For this reason we try to predict what photo a user would take of an item, because that image is the argument that can best convince her of the qualities of the item. In this sense, an RS can explain its results and, therefore, increase its reliability. Furthermore, once we have a model to predict attractive images for users, we can estimate their distribution. Thus, the companies acquire a vivid knowledge about the aspects that the clients highlight of their products. The paper includes a formal framework that estimates the authorship probability for a given pair (user, photo). To illustrate the proposal, we use data gathered from TripAdvisor containing the reviews (with photos) of restaurants in six cities of different sizes.
Despite their remarkable reasoning capabilities across diverse domains, large language models (LLMs) face fundamental challenges in natively functioning as generative reasoning recommendation models (GRRMs), where the intrinsic modeling gap between textual semantics and collaborative filtering signals, combined with the sparsity and stochasticity of user feedback, presents significant obstacles. This work explores how to build GRRMs by adapting pre-trained LLMs, which achieves a unified understanding-reasoning-prediction manner for recommendation tasks. We propose GREAM, an end-to-end framework that integrates three components: (i) Collaborative-Semantic Alignment, which fuses heterogeneous textual evidence to construct semantically consistent, discrete item indices and auxiliary alignment tasks that ground linguistic representations in interaction semantics; (ii) Reasoning Curriculum Activation, which builds a synthetic dataset with explicit Chain-of-Thought supervision and a curriculum that progresses through behavioral evidence extraction, latent preference modeling, intent inference, recommendation formulation, and denoised sequence rewriting; and (iii) Sparse-Regularized Group Policy Optimization (SRPO), which stabilizes post-training via Residual-Sensitive Verifiable Reward and Bonus-Calibrated Group Advantage Estimation, enabling end-to-end optimization under verifiable signals despite sparse successes. GREAM natively supports two complementary inference modes: Direct Sequence Recommendation for high-throughput, low-latency deployment, and Sequential Reasoning Recommendation that first emits an interpretable reasoning chain for causal transparency. Experiments on three datasets demonstrate consistent gains over strong baselines, providing a practical path toward verifiable-RL-driven LLM recommenders.
We study retrieval design for code-focused generation tasks under realistic compute budgets. Using two complementary tasks from Long Code Arena -- code completion and bug localization -- we systematically compare retrieval configurations across various context window sizes along three axes: (i) chunking strategy, (ii) similarity scoring, and (iii) splitting granularity. (1) For PL-PL, sparse BM25 with word-level splitting is the most effective and practical, significantly outperforming dense alternatives while being an order of magnitude faster. (2) For NL-PL, proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers, however requiring 100x larger latency. (3) Optimal chunk size scales with available context: 32-64 line chunks work best at small budgets, and whole-file retrieval becomes competitive at 16000 tokens. (4) Simple line-based chunking matches syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x across configurations; BPE-based splitting is needlessly slow, and BM25 + word splitting offers the best quality-latency trade-off. Thus, we provide evidence-based recommendations for implementing effective code-oriented RAG systems based on task requirements, model constraints, and computational efficiency.
The worlds people have strong opinions about artificial intelligence (AI), and they want policymakers to listen. Governments are inviting public comment on AI, but as they translate input into policy, much of what citizens say is lost. Policymakers are missing a critical opportunity to build trust in AI and its governance. This paper compares three countries, Australia, Colombia, and the United States, that invited citizens to comment on AI risks and policies. Using a landscape analysis, the authors examined how each government solicited feedback and whether that input shaped governance. Yet in none of the three cases did citizens and policymakers establish a meaningful dialogue. Governments did little to attract diverse voices or publicize calls for comment, leaving most citizens unaware or unprepared to respond. In each nation, fewer than one percent of the population participated. Moreover, officials showed limited responsiveness to the feedback they received, failing to create an effective feedback loop. The study finds a persistent gap between the promise and practice of participatory AI governance. The authors conclude that current approaches are unlikely to build trust or legitimacy in AI because policymakers are not adequately listening or responding to public concerns. They offer eight recommendations: promote AI literacy; monitor public feedback; broaden outreach; hold regular online forums; use innovative engagement methods; include underrepresented groups; respond publicly to input; and make participation easier.
The retrieval-ranking paradigm has long dominated e-commerce search, but its reliance on query-item matching fundamentally misaligns with multi-stage cognitive decision processes of platform users. This misalignment introduces critical limitations: semantic gaps in complex queries, high decision costs due to cross-platform information foraging, and the absence of professional shopping guidance. To address these issues, we propose a Multi-Agent Cognitive Decision Framework (MACDF), which shifts the paradigm from passive retrieval to proactive decision support. Extensive offline evaluations demonstrate MACDF's significant improvements in recommendation accuracy and user satisfaction, particularly for complex queries involving negation, multi-constraint, or reasoning demands. Online A/B testing on JD search platform confirms its practical efficacy. This work highlights the transformative potential of multi-agent cognitive systems in redefining e-commerce search.
Large language models (LLMs) produce outputs with varying levels of uncertainty, and, just as often, varying levels of correctness; making their practical reliability far from guaranteed. To quantify this uncertainty, we systematically evaluate four approaches for confidence estimation in LLM outputs: VCE, MSP, Sample Consistency, and CoCoA (Vashurin et al., 2025). For the evaluation of the approaches, we conduct experiments on four question-answering tasks using a state-of-the-art open-source LLM. Our results show that each uncertainty metric captures a different facet of model confidence and that the hybrid CoCoA approach yields the best reliability overall, improving both calibration and discrimination of correct answers. We discuss the trade-offs of each method and provide recommendations for selecting uncertainty measures in LLM applications.
Generative recommenders, typically transformer-based autoregressive models, predict the next item or action from a user's interaction history. Their effectiveness depends on how the model represents where an interaction event occurs in the sequence (discrete index) and when it occurred in wall-clock time. Prevailing approaches inject time via learned embeddings or relative attention biases. In this paper, we argue that RoPE-based approaches, if designed properly, can be a stronger alternative for jointly modeling temporal and sequential information in user behavior sequences. While vanilla RoPE in LLMs considers only token order, generative recommendation requires incorporating both event time and token index. To address this, we propose Time-and-Order RoPE (TO-RoPE), a family of rotary position embedding designs that treat index and time as angle sources shaping the query-key geometry directly. We present three instantiations: early fusion, split-by-dim, and split-by-head. Extensive experiments on both publicly available datasets and a proprietary industrial dataset show that TO-RoPE variants consistently improve accuracy over existing methods for encoding time and index. These results position rotary embeddings as a simple, principled, and deployment-friendly foundation for generative recommendation.
Dynamic treatment regimes are sequential decision rules that adapt treatment according to individual time-varying characteristics and outcomes to achieve optimal effects, with applications in precision medicine, personalized recommendations, and dynamic marketing. Estimating optimal dynamic treatment regimes via sequential randomized trials might face costly and ethical hurdles, often necessitating the use of historical observational data. In this work, we utilize proximal causal inference framework for learning optimal dynamic treatment regimes when the unconfoundedness assumption fails. Our contributions are four-fold: (i) we propose three nonparametric identification methods for optimal dynamic treatment regimes; (ii) we establish the semiparametric efficiency bound for the value function of a given regime; (iii) we propose a (K+1)-robust method for learning optimal dynamic treatment regimes, where K is the number of stages; (iv) as a by-product for marginal structural models, we establish identification and estimation of counterfactual means under a static regime. Numerical experiments validate the efficiency and multiple robustness of our proposed methods.