Abstract:While differentiable logic gates have shown promise in feedforward networks, their application to sequential modeling remains unexplored. This paper presents the first implementation of Recurrent Deep Differentiable Logic Gate Networks (RDDLGN), combining Boolean operations with recurrent architectures for sequence-to-sequence learning. Evaluated on WMT'14 English-German translation, RDDLGN achieves 5.00 BLEU and 30.9\% accuracy during training, approaching GRU performance (5.41 BLEU) and graceful degradation (4.39 BLEU) during inference. This work establishes recurrent logic-based neural computation as viable, opening research directions for FPGA acceleration in sequential modeling and other recursive network architectures.
Abstract:Previous work has suggested that preprocessing images through lossy compression can defend against adversarial perturbations, but comprehensive attack evaluations have been lacking. In this paper, we construct strong white-box and adaptive attacks against various compression models and identify a critical challenge for attackers: high realism in reconstructed images significantly increases attack difficulty. Through rigorous evaluation across multiple attack scenarios, we demonstrate that compression models capable of producing realistic, high-fidelity reconstructions are substantially more resistant to our attacks. In contrast, low-realism compression models can be broken. Our analysis reveals that this is not due to gradient masking. Rather, realistic reconstructions maintaining distributional alignment with natural images seem to offer inherent robustness. This work highlights a significant obstacle for future adversarial attacks and suggests that developing more effective techniques to overcome realism represents an essential challenge for comprehensive security evaluation.
Abstract:We introduce PANAMA, an active learning framework for the training of end-to-end parametric guitar amp models using a WaveNet-like architecture. With \model, one can create a virtual amp by recording samples that are determined by an active learning strategy to use a minimum amount of datapoints (i.e., amp knob settings). We show that gradient-based optimization algorithms can be used to determine the optimal datapoints to sample, and that the approach helps under a constrained number of samples.
Abstract:Recent advancements have brought generated music closer to human-created compositions, yet evaluating these models remains challenging. While human preference is the gold standard for assessing quality, translating these subjective judgments into objective metrics, particularly for text-audio alignment and music quality, has proven difficult. In this work, we generate 6k songs using 12 state-of-the-art models and conduct a survey of 15k pairwise audio comparisons with 2.5k human participants to evaluate the correlation between human preferences and widely used metrics. To the best of our knowledge, this work is the first to rank current state-of-the-art music generation models and metrics based on human preference. To further the field of subjective metric evaluation, we provide open access to our dataset of generated music and human evaluations.
Abstract:Modern neural networks demonstrate state-of-the-art performance on numerous existing benchmarks; however, their high computational requirements and energy consumption prompt researchers to seek more efficient solutions for real-world deployment. Logic gate networks (LGNs) learns a large network of logic gates for efficient image classification. However, learning a network that can solve a simple problem like CIFAR-10 can take days to weeks to train. Even then, almost half of the network remains unused, causing a discretization gap. This discretization gap hinders real-world deployment of LGNs, as the performance drop between training and inference negatively impacts accuracy. We inject Gumbel noise with a straight-through estimator during training to significantly speed up training, improve neuron utilization, and decrease the discretization gap. We theoretically show that this results from implicit Hessian regularization, which improves the convergence properties of LGNs. We train networks $4.5 \times$ faster in wall-clock time, reduce the discretization gap by $98\%$, and reduce the number of unused gates by $100\%$.
Abstract:Voting advice applications (VAAs) help millions of voters understand which political parties or candidates best align with their views. This paper explores the potential risks these applications pose to the democratic process when targeted by adversarial entities. In particular, we expose 11 manipulation strategies and measure their impact using data from Switzerland's primary VAA, Smartvote, collected during the last two national elections. We find that altering application parameters, such as the matching method, can shift a party's recommendation frequency by up to 105%. Cherry-picking questionnaire items can increase party recommendation frequency by over 261%, while subtle changes to parties' or candidates' responses can lead to a 248% increase. To address these vulnerabilities, we propose adversarial robustness properties VAAs should satisfy, introduce empirical metrics for assessing the resilience of various matching methods, and suggest possible avenues for research toward mitigating the effect of manipulation. Our framework is key to ensuring secure and reliable AI-based VAAs poised to emerge in the near future.
Abstract:Adversarial attacks on image models threaten system robustness by introducing imperceptible perturbations that cause incorrect predictions. We investigate human-aligned learned lossy compression as a defense mechanism, comparing two learned models (HiFiC and ELIC) against traditional JPEG across various quality levels. Our experiments on ImageNet subsets demonstrate that learned compression methods outperform JPEG, particularly for Vision Transformer architectures, by preserving semantically meaningful content while removing adversarial noise. Even in white-box settings where attackers can access the defense, these methods maintain substantial effectiveness. We also show that sequential compression--applying rounds of compression/decompression--significantly enhances defense efficacy while maintaining classification performance. Our findings reveal that human-aligned compression provides an effective, computationally efficient defense that protects the image features most relevant to human and machine understanding. It offers a practical approach to improving model robustness against adversarial threats.
Abstract:Blood vessel networks in the brain play a crucial role in stroke research, where understanding their topology is essential for analyzing blood flow dynamics. However, extracting detailed topological vessel network information from microscopy data remains a significant challenge, mainly due to the scarcity of labeled training data and the need for high topological accuracy. This work combines synthetic data generation with deep learning to automatically extract vessel networks as graphs from volumetric microscopy data. To combat data scarcity, we introduce a comprehensive pipeline for generating large-scale synthetic datasets that mirror the characteristics of real vessel networks. Our three-stage approach progresses from abstract graph generation through vessel mask creation to realistic medical image synthesis, incorporating biological constraints and imaging artifacts at each stage. Using this synthetic data, we develop a two-stage deep learning pipeline of 3D U-Net-based models for node detection and edge prediction. Fine-tuning on real microscopy data shows promising adaptation, improving edge prediction F1 scores from 0.496 to 0.626 by training on merely 5 manually labeled samples. These results suggest that automated vessel network extraction is becoming practically feasible, opening new possibilities for large-scale vascular analysis in stroke research.
Abstract:Over the past years, advances in artificial intelligence (AI) have demonstrated how AI can solve many perception and generation tasks, such as image classification and text writing, yet reasoning remains a challenge. This paper introduces the FLIP dataset, a benchmark for evaluating AI reasoning capabilities based on human verification tasks on the Idena blockchain. FLIP challenges present users with two orderings of 4 images, requiring them to identify the logically coherent one. By emphasizing sequential reasoning, visual storytelling, and common sense, FLIP provides a unique testbed for multimodal AI systems. Our experiments evaluate state-of-the-art models, leveraging both vision-language models (VLMs) and large language models (LLMs). Results reveal that even the best open-sourced and closed-sourced models achieve maximum accuracies of 75.5% and 77.9%, respectively, in zero-shot settings, compared to human performance of 95.3%. Captioning models aid reasoning models by providing text descriptions of images, yielding better results than when using the raw images directly, 69.6% vs. 75.2% for Gemini 1.5 Pro. Combining the predictions from 15 models in an ensemble increases the accuracy to 85.2%. These findings highlight the limitations of existing reasoning models and the need for robust multimodal benchmarks like FLIP. The full codebase and dataset will be available at https://github.com/aplesner/FLIP-Reasoning-Challenge.
Abstract:The rise of reinforcement learning (RL) in critical real-world applications demands a fundamental rethinking of privacy in AI systems. Traditional privacy frameworks, designed to protect isolated data points, fall short for sequential decision-making systems where sensitive information emerges from temporal patterns, behavioral strategies, and collaborative dynamics. Modern RL paradigms, such as federated RL (FedRL) and RL with human feedback (RLHF) in large language models (LLMs), exacerbate these challenges by introducing complex, interactive, and context-dependent learning environments that traditional methods do not address. In this position paper, we argue for a new privacy paradigm built on four core principles: multi-scale protection, behavioral pattern protection, collaborative privacy preservation, and context-aware adaptation. These principles expose inherent tensions between privacy, utility, and interpretability that must be navigated as RL systems become more pervasive in high-stakes domains like healthcare, autonomous vehicles, and decision support systems powered by LLMs. To tackle these challenges, we call for the development of new theoretical frameworks, practical mechanisms, and rigorous evaluation methodologies that collectively enable effective privacy protection in sequential decision-making systems.