Forgery detection is the process of identifying and detecting forged or manipulated documents, images, or videos.




Achieving robust generalization in speech deepfake detection (SDD) remains a primary challenge, as models often fail to detect unseen forgery methods. While research has focused on model-centric and algorithm-centric solutions, the impact of data composition is often underexplored. This paper proposes a data-centric approach, analyzing the SDD data landscape from two practical perspectives: constructing a single dataset and aggregating multiple datasets. To address the first perspective, we conduct a large-scale empirical study to characterize the data scaling laws for SDD, quantifying the impact of source and generator diversity. To address the second, we propose the Diversity-Optimized Sampling Strategy (DOSS), a principled framework for mixing heterogeneous data with two implementations: DOSS-Select (pruning) and DOSS-Weight (re-weighting). Our experiments show that DOSS-Select outperforms the naive aggregation baseline while using only 3% of the total available data. Furthermore, our final model, trained on a 12k-hour curated data pool using the optimal DOSS-Weight strategy, achieves state-of-the-art performance, outperforming large-scale baselines with greater data and model efficiency on both public benchmarks and a new challenge set of various commercial APIs.
Advances in generative modeling have made it increasingly easy to fabricate realistic portrayals of individuals, creating serious risks for security, communication, and public trust. Detecting such person-driven manipulations requires systems that not only distinguish altered content from authentic media but also provide clear and reliable reasoning. In this paper, we introduce TriDF, a comprehensive benchmark for interpretable DeepFake detection. TriDF contains high-quality forgeries from advanced synthesis models, covering 16 DeepFake types across image, video, and audio modalities. The benchmark evaluates three key aspects: Perception, which measures the ability of a model to identify fine-grained manipulation artifacts using human-annotated evidence; Detection, which assesses classification performance across diverse forgery families and generators; and Hallucination, which quantifies the reliability of model-generated explanations. Experiments on state-of-the-art multimodal large language models show that accurate perception is essential for reliable detection, but hallucination can severely disrupt decision-making, revealing the interdependence of these three aspects. TriDF provides a unified framework for understanding the interaction between detection accuracy, evidence identification, and explanation reliability, offering a foundation for building trustworthy systems that address real-world synthetic media threats.
Document forgery poses a growing threat to legal, economic, and governmental processes, requiring increasingly sophisticated verification mechanisms. One approach involves the use of plausibility checks, rule-based procedures that assess the correctness and internal consistency of data, to detect anomalies or signs of manipulation. Although these verification procedures are essential for ensuring data integrity, existing plausibility checks are manually implemented by software engineers, which is time-consuming. Recent advances in code generation with large language models (LLMs) offer new potential for automating and scaling the generation of these checks. However, adapting LLMs to the specific requirements of an unknown domain remains a significant challenge. This work investigates the extent to which LLMs, adapted on domain-specific code and data through different fine-tuning strategies, can generate rule-based plausibility checks for forgery detection on constrained hardware resources. We fine-tune open-source LLMs, Llama 3.1 8B and OpenCoder 8B, on structured datasets derived from real-world application scenarios and evaluate the generated plausibility checks on previously unseen forgery patterns. The results demonstrate that the models are capable of generating executable and effective verification procedures. This also highlights the potential of LLMs as scalable tools to support human decision-making in security-sensitive contexts where comprehensibility is required.




Deep learning models for Electrocardiogram (ECG) analysis have achieved expert-level performance but remain vulnerable to adversarial attacks. However, applying Universal Adversarial Perturbations (UAP) to ECG signals presents a unique challenge: standard imperceptible noise constraints (e.g., 10 uV) fail to generate effective universal attacks due to the high inter-subject variability of cardiac waveforms. Furthermore, traditional "invisible" attacks are easily dismissed by clinicians as technical artifacts, failing to compromise the human-in-the-loop diagnostic pipeline. In this study, we propose SCAR (Semantic Cardiac Adversarial Representation), a novel UAP framework tailored to bypass the clinical "Human Firewall." Unlike traditional approaches, SCAR integrates spatiotemporal smoothing (W=25, approx. 50ms), spectral consistency (<15 Hz), and anatomical amplitude constraints (<0.2 mV) directly into the gradient optimization manifold. Results: We benchmarked SCAR against a rigorous baseline (Standard Universal DeepFool with post-hoc physiological filtering). While the baseline suffers a performance collapse (~16% success rate on transfer tasks), SCAR maintains robust transferability (58.09% on ResNet) and achieves 82.46% success on the source model. Crucially, clinical analysis reveals an emergent targeted behavior: SCAR specifically converges to forging Myocardial Infarction features (90.2% misdiagnosis) by mathematically reconstructing pathological ST-segment elevations. Finally, we demonstrate that SCAR serves a dual purpose: it not only functions as a robust data augmentation strategy for Hybrid Adversarial Training, offering optimal clinical defense, but also provides effective educational samples for training clinicians to recognize low-cost, AI-targeted semantic forgeries.




Existing image forgery detection (IFD) methods either exploit low-level, semantics-agnostic artifacts or rely on multimodal large language models (MLLMs) with high-level semantic knowledge. Although naturally complementary, these two information streams are highly heterogeneous in both paradigm and reasoning, making it difficult for existing methods to unify them or effectively model their cross-level interactions. To address this gap, we propose ForenAgent, a multi-round interactive IFD framework that enables MLLMs to autonomously generate, execute, and iteratively refine Python-based low-level tools around the detection objective, thereby achieving more flexible and interpretable forgery analysis. ForenAgent follows a two-stage training pipeline combining Cold Start and Reinforcement Fine-Tuning to enhance its tool interaction capability and reasoning adaptability progressively. Inspired by human reasoning, we design a dynamic reasoning loop comprising global perception, local focusing, iterative probing, and holistic adjudication, and instantiate it as both a data-sampling strategy and a task-aligned process reward. For systematic training and evaluation, we construct FABench, a heterogeneous, high-quality agent-forensics dataset comprising 100k images and approximately 200k agent-interaction question-answer pairs. Experiments show that ForenAgent exhibits emergent tool-use competence and reflective reasoning on challenging IFD tasks when assisted by low-level tools, charting a promising route toward general-purpose IFD. The code will be released after the review process is completed.




Recent advances in AI-driven image generation have introduced new challenges for verifying the authenticity of digital evidence in forensic investigations. Modern generative models can produce visually consistent forgeries that evade traditional detectors based on pixel or compression artefacts. Most existing approaches also lack an explicit measure of anomaly intensity, which limits their ability to quantify the severity of manipulation. This paper introduces Vision-Attention Anomaly Scoring (VAAS), a novel dual-module framework that integrates global attention-based anomaly estimation using Vision Transformers (ViT) with patch-level self-consistency scoring derived from SegFormer embeddings. The hybrid formulation provides a continuous and interpretable anomaly score that reflects both the location and degree of manipulation. Evaluations on the DF2023 and CASIA v2.0 datasets demonstrate that VAAS achieves competitive F1 and IoU performance, while enhancing visual explainability through attention-guided anomaly maps. The framework bridges quantitative detection with human-understandable reasoning, supporting transparent and reliable image integrity assessment. The source code for all experiments and corresponding materials for reproducing the results are available open source.
In this paper, we propose FakeRadar, a novel deepfake video detection framework designed to address the challenges of cross-domain generalization in real-world scenarios. Existing detection methods typically rely on manipulation-specific cues, performing well on known forgery types but exhibiting severe limitations against emerging manipulation techniques. This poor generalization stems from their inability to adapt effectively to unseen forgery patterns. To overcome this, we leverage large-scale pretrained models (e.g. CLIP) to proactively probe the feature space, explicitly highlighting distributional gaps between real videos, known forgeries, and unseen manipulations. Specifically, FakeRadar introduces Forgery Outlier Probing, which employs dynamic subcluster modeling and cluster-conditional outlier generation to synthesize outlier samples near boundaries of estimated subclusters, simulating novel forgery artifacts beyond known manipulation types. Additionally, we design Outlier-Guided Tri-Training, which optimizes the detector to distinguish real, fake, and outlier samples using proposed outlier-driven contrastive learning and outlier-conditioned cross-entropy losses. Experiments show that FakeRadar outperforms existing methods across various benchmark datasets for deepfake video detection, particularly in cross-domain evaluations, by handling the variety of emerging manipulation techniques.




Agentic AI introduces security vulnerabilities that traditional LLM safeguards fail to address. Although recent work by Unit 42 at Palo Alto Networks demonstrated that ChatGPT-4o successfully executes attacks as an agent that it refuses in chat mode, there is no comparative analysis in multiple models and frameworks. We conducted the first systematic penetration testing and comparative evaluation of agentic AI systems, testing five prominent models (Claude 3.5 Sonnet, Gemini 2.5 Flash, GPT-4o, Grok 2, and Nova Pro) across two agentic AI frameworks (AutoGen and CrewAI) using a seven-agent architecture that mimics the functionality of a university information management system and 13 distinct attack scenarios that span prompt injection, Server Side Request Forgery (SSRF), SQL injection, and tool misuse. Our 130 total test cases reveal significant security disparities: AutoGen demonstrates a 52.3% refusal rate versus CrewAI's 30.8%, while model performance ranges from Nova Pro's 46.2% to Claude and Grok 2's 38.5%. Most critically, Grok 2 on CrewAI rejected only 2 of 13 attacks (15.4% refusal rate), and the overall refusal rate of 41.5% across all configurations indicates that more than half of malicious prompts succeeded despite enterprise-grade safety mechanisms. We identify six distinct defensive behavior patterns including a novel "hallucinated compliance" strategy where models fabricate outputs rather than executing or refusing attacks, and provide actionable recommendations for secure agent deployment. Complete attack prompts are also included in the Appendix to enable reproducibility.




The pursuit of a universal AI-generated image (AIGI) detector often relies on aggregating data from numerous generators to improve generalization. However, this paper identifies a paradoxical phenomenon we term the Benefit then Conflict dilemma, where detector performance stagnates and eventually degrades as source diversity expands. Our systematic analysis, diagnoses this failure by identifying two core issues: severe data-level heterogeneity, which causes the feature distributions of real and synthetic images to increasingly overlap, and a critical model-level bottleneck from fixed, pretrained encoders that cannot adapt to the rising complexity. To address these challenges, we propose Generator-Aware Prototype Learning (GAPL), a framework that constrain representation with a structured learning paradigm. GAPL learns a compact set of canonical forgery prototypes to create a unified, low-variance feature space, effectively countering data heterogeneity.To resolve the model bottleneck, it employs a two-stage training scheme with Low-Rank Adaptation, enhancing its discriminative power while preserving valuable pretrained knowledge. This approach establishes a more robust and generalizable decision boundary. Through extensive experiments, we demonstrate that GAPL achieves state-of-the-art performance, showing superior detection accuracy across a wide variety of GAN and diffusion-based generators. Code is available at https://github.com/UltraCapture/GAPL
The proliferation of synthetic facial imagery has intensified the need for robust Open-World DeepFake Attribution (OW-DFA), which aims to attribute both known and unknown forgeries using labeled data for known types and unlabeled data containing a mixture of known and novel types. However, existing OW-DFA methods face two critical limitations: 1) A confidence skew that leads to unreliable pseudo-labels for novel forgeries, resulting in biased training. 2) An unrealistic assumption that the number of unknown forgery types is known *a priori*. To address these challenges, we propose a Confidence-Aware Asymmetric Learning (CAL) framework, which adaptively balances model confidence across known and novel forgery types. CAL mainly consists of two components: Confidence-Aware Consistency Regularization (CCR) and Asymmetric Confidence Reinforcement (ACR). CCR mitigates pseudo-label bias by dynamically scaling sample losses based on normalized confidence, gradually shifting the training focus from high- to low-confidence samples. ACR complements this by separately calibrating confidence for known and novel classes through selective learning on high-confidence samples, guided by their confidence gap. Together, CCR and ACR form a mutually reinforcing loop that significantly improves the model's OW-DFA performance. Moreover, we introduce a Dynamic Prototype Pruning (DPP) strategy that automatically estimates the number of novel forgery types in a coarse-to-fine manner, removing the need for unrealistic prior assumptions and enhancing the scalability of our methods to real-world OW-DFA scenarios. Extensive experiments on the standard OW-DFA benchmark and a newly extended benchmark incorporating advanced manipulations demonstrate that CAL consistently outperforms previous methods, achieving new state-of-the-art performance on both known and novel forgery attribution.