Abstract:Recent proliferation of generative AI tools for visual content creation-particularly in the context of visual artworks-has raised serious concerns about copyright infringement and forgery. The large-scale datasets used to train these models often contain a mixture of copyrighted and non-copyrighted artworks. Given the tendency of generative models to memorize training patterns, they are susceptible to varying degrees of copyright violation. Building on the recently proposed DeepfakeArt Challenge benchmark, this work introduces DFA-CON, a contrastive learning framework designed to detect copyright-infringing or forged AI-generated art. DFA-CON learns a discriminative representation space, posing affinity among original artworks and their forged counterparts within a contrastive learning framework. The model is trained across multiple attack types, including inpainting, style transfer, adversarial perturbation, and cutmix. Evaluation results demonstrate robust detection performance across most attack types, outperforming recent pretrained foundation models. Code and model checkpoints will be released publicly upon acceptance.
Abstract:Visual media has always been the most enjoyed way of communication. From the advent of television to the modern day hand held computers, we have witnessed the exponential growth of images around us. Undoubtedly it's a fact that they carry a lot of information in them which needs be utilized in an effective manner. Hence intense need has been felt to efficiently index and store large image collections for effective and on- demand retrieval. For this purpose low-level features extracted from the image contents like color, texture and shape has been used. Content based image retrieval systems employing these features has proven very successful. Image retrieval has promising applications in numerous fields and hence has motivated researchers all over the world. New and improved ways to represent visual content are being developed each day. Tremendous amount of research has been carried out in the last decade. In this paper we will present a detailed overview of some of the powerful color, texture and shape descriptors for content based image retrieval. A comparative analysis will also be carried out for providing an insight into outstanding challenges in this field.