What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Aug 07, 2025
Abstract:LLM-powered code generation has the potential to revolutionize creative coding endeavors, such as live-coding, by enabling users to focus on structural motifs over syntactic details. In such domains, when prompting an LLM, users may benefit from considering multiple varied code candidates to better realize their musical intentions. Code generation models, however, struggle to present unique and diverse code candidates, with no direct insight into the code's audio output. To better establish a relationship between code candidates and produced audio, we investigate the topology of the mapping between code and audio embedding spaces. We find that code and audio embeddings do not exhibit a simple linear relationship, but supplement this with a constructed predictive model that shows an embedding alignment map could be learned. Supplementing the aim for musically diverse output, we present a model that given code predicts output audio embedding, constructing a code-audio embedding alignment map.
Via

Aug 07, 2025
Abstract:Recent advances in audio-based generative language models have accelerated AI-driven lyric-to-song generation. However, these models frequently suffer from content hallucination, producing outputs misaligned with the input lyrics and undermining musical coherence. Current supervised fine-tuning (SFT) approaches, limited by passive label-fitting, exhibit constrained self-improvement and poor hallucination mitigation. To address this core challenge, we propose a novel reinforcement learning (RL) framework leveraging preference optimization for hallucination control. Our key contributions include: (1) Developing a robust hallucination preference dataset constructed via phoneme error rate (PER) computation and rule-based filtering to capture alignment with human expectations; (2) Implementing and evaluating three distinct preference optimization strategies within the RL framework: Direct Preference Optimization (DPO), Proximal Policy Optimization (PPO), and Group Relative Policy Optimization (GRPO). DPO operates off-policy to enhance positive token likelihood, achieving a significant 7.4% PER reduction. PPO and GRPO employ an on-policy approach, training a PER-based reward model to iteratively optimize sequences via reward maximization and KL-regularization, yielding PER reductions of 4.9% and 4.7%, respectively. Comprehensive objective and subjective evaluations confirm that our methods effectively suppress hallucinations while preserving musical quality. Crucially, this work presents a systematic, RL-based solution to hallucination control in lyric-to-song generation. The framework's transferability also unlocks potential for music style adherence and musicality enhancement, opening new avenues for future generative song research.
Via

Jul 28, 2025
Abstract:Music enhances video narratives and emotions, driving demand for automatic video-to-music (V2M) generation. However, existing V2M methods relying solely on visual features or supplementary textual inputs generate music in a black-box manner, often failing to meet user expectations. To address this challenge, we propose a novel multi-condition guided V2M generation framework that incorporates multiple time-varying conditions for enhanced control over music generation. Our method uses a two-stage training strategy that enables learning of V2M fundamentals and audiovisual temporal synchronization while meeting users' needs for multi-condition control. In the first stage, we introduce a fine-grained feature selection module and a progressive temporal alignment attention mechanism to ensure flexible feature alignment. For the second stage, we develop a dynamic conditional fusion module and a control-guided decoder module to integrate multiple conditions and accurately guide the music composition process. Extensive experiments demonstrate that our method outperforms existing V2M pipelines in both subjective and objective evaluations, significantly enhancing control and alignment with user expectations.
* Accepted by the 33rd ACM International Conference on Multimedia
(ACMMM 2025). The project page is available at
https://kita-wjx.github.io/MCV2M/
Via

Aug 07, 2025
Abstract:Recently, the information content (IC) of predictions from a Generative Infinite-Vocabulary Transformer (GIVT) has been used to model musical expectancy and surprisal in audio. We investigate the effectiveness of such modelling using IC calculated with autoregressive diffusion models (ADMs). We empirically show that IC estimates of models based on two different diffusion ordinary differential equations (ODEs) describe diverse data better, in terms of negative log-likelihood, than a GIVT. We evaluate diffusion model IC's effectiveness in capturing surprisal aspects by examining two tasks: (1) capturing monophonic pitch surprisal, and (2) detecting segment boundaries in multi-track audio. In both tasks, the diffusion models match or exceed the performance of a GIVT. We hypothesize that the surprisal estimated at different diffusion process noise levels corresponds to the surprisal of music and audio features present at different audio granularities. Testing our hypothesis, we find that, for appropriate noise levels, the studied musical surprisal tasks' results improve. Code is provided on github.com/SonyCSLParis/audioic.
* 9 pages, 1 figure, 5 tables. Accepted at the 25th International
Society for Music Information Retrieval Conference (ISMIR), Daejeon, South
Korea, 2025 2025
Via

Jul 31, 2025
Abstract:Many existing AI music generation tools rely on text prompts, complex interfaces, or instrument-like controls, which may require musical or technical knowledge that non-musicians do not possess. This paper introduces DeformTune, a prototype system that combines a tactile deformable interface with the MeasureVAE model to explore more intuitive, embodied, and explainable AI interaction. We conducted a preliminary study with 11 adult participants without formal musical training to investigate their experience with AI-assisted music creation. Thematic analysis of their feedback revealed recurring challenge--including unclear control mappings, limited expressive range, and the need for guidance throughout use. We discuss several design opportunities for enhancing explainability of AI, including multimodal feedback and progressive interaction support. These findings contribute early insights toward making AI music systems more explainable and empowering for novice users.
* In Proceedings of Explainable AI for the Arts Workshop 2025 (XAIxArts
2025) arXiv:2406.14485
Via

Aug 11, 2025
Abstract:Despite recent advances, long-sequence video generation frameworks still suffer from significant limitations: poor assistive capability, suboptimal visual quality, and limited expressiveness. To mitigate these limitations, we propose MAViS, an end-to-end multi-agent collaborative framework for long-sequence video storytelling. MAViS orchestrates specialized agents across multiple stages, including script writing, shot designing, character modeling, keyframe generation, video animation, and audio generation. In each stage, agents operate under the 3E Principle -- Explore, Examine, and Enhance -- to ensure the completeness of intermediate outputs. Considering the capability limitations of current generative models, we propose the Script Writing Guidelines to optimize compatibility between scripts and generative tools. Experimental results demonstrate that MAViS achieves state-of-the-art performance in assistive capability, visual quality, and video expressiveness. Its modular framework further enables scalability with diverse generative models and tools. With just a brief user prompt, MAViS is capable of producing high-quality, expressive long-sequence video storytelling, enriching inspirations and creativity for users. To the best of our knowledge, MAViS is the only framework that provides multimodal design output -- videos with narratives and background music.
* Video Generation Agent
Via

Aug 11, 2025
Abstract:The FMCW radars are widely used for automotive radar systems. The basic idea for FMCW radars is to generate a linear frequency ramp as transmit signal. The difference frequency, (i.e., beat frequency) between the transmitted and received signal is determined after down conversion. The FFT operation on beat frequency signal can recognize targets at different range and velocity. Increasing demand on safety functionality leads to the Direction of Arrival (DOA) estimation to resolve two closely located targets. Consequently, the problem of angle estimation for 77GHz FMCW automotive radar simulated data has been investigated in this term project. In particular, we examined the performances of FFT, MUSIC and compressed sensing in angle estimation task, and it was found that although FFT is the fastest algorithm, it has very poor angular resolution when compared with others which are both super resolution algorithms. The code for this project report is available at https://github.com/ekurtgl/FMCW-MIMO-Radar-Simulation.
Via

Jul 22, 2025
Abstract:One particularly promising use case of Large Language Models (LLMs) for recommendation is the automatic generation of Natural Language (NL) user taste profiles from consumption data. These profiles offer interpretable and editable alternatives to opaque collaborative filtering representations, enabling greater transparency and user control. However, it remains unclear whether users consider these profiles to be an accurate representation of their taste, which is crucial for trust and usability. Moreover, because LLMs inherit societal and data-driven biases, profile quality may systematically vary across user and item characteristics. In this paper, we study this issue in the context of music streaming, where personalization is challenged by a large and culturally diverse catalog. We conduct a user study in which participants rate NL profiles generated from their own listening histories. We analyze whether identification with the profiles is biased by user attributes (e.g., mainstreamness, taste diversity) and item features (e.g., genre, country of origin). We also compare these patterns to those observed when using the profiles in a downstream recommendation task. Our findings highlight both the potential and limitations of scrutable, LLM-based profiling in personalized systems.
Via

Aug 06, 2025
Abstract:The accelerating pace of research on autoregressive generative models has produced thousands of papers, making manual literature surveys and reproduction studies increasingly impractical. We present a fully open-source, reproducible pipeline that automatically retrieves candidate documents from public repositories, filters them for relevance, extracts metadata, hyper-parameters and reported results, clusters topics, produces retrieval-augmented summaries and generates containerised scripts for re-running selected experiments. Quantitative evaluation on 50 manually-annotated papers shows F1 scores above 0.85 for relevance classification, hyper-parameter extraction and citation identification. Experiments on corpora of up to 1000 papers demonstrate near-linear scalability with eight CPU workers. Three case studies -- AWD-LSTM on WikiText-2, Transformer-XL on WikiText-103 and an autoregressive music model on the Lakh MIDI dataset -- confirm that the extracted settings support faithful reproduction, achieving test perplexities within 1--3% of the original reports.
* 9 pages
Via

Jul 28, 2025
Abstract:Diffusion and flow-matching models have revolutionized automatic text-to-audio generation in recent times. These models are increasingly capable of generating high quality and faithful audio outputs capturing to speech and acoustic events. However, there is still much room for improvement in creative audio generation that primarily involves music and songs. Recent open lyrics-to-song models, such as, DiffRhythm, ACE-Step, and LeVo, have set an acceptable standard in automatic song generation for recreational use. However, these models lack fine-grained word-level controllability often desired by musicians in their workflows. To the best of our knowledge, our flow-matching-based JAM is the first effort toward endowing word-level timing and duration control in song generation, allowing fine-grained vocal control. To enhance the quality of generated songs to better align with human preferences, we implement aesthetic alignment through Direct Preference Optimization, which iteratively refines the model using a synthetic dataset, eliminating the need or manual data annotations. Furthermore, we aim to standardize the evaluation of such lyrics-to-song models through our public evaluation dataset JAME. We show that JAM outperforms the existing models in terms of the music-specific attributes.
Via
