Abstract:Recently, the problem of music plagiarism has emerged as an even more pressing social issue. As music information retrieval research advances, there is a growing effort to address issues related to music plagiarism. However, many studies, including our previous work, have conducted research without clearly defining what the music plagiarism detection task actually involves. This lack of a clear definition has slowed research progress and made it hard to apply results to real-world scenarios. To fix this situation, we defined how Music Plagiarism Detection is different from other MIR tasks and explained what problems need to be solved. We introduce the Similar Music Pair dataset to support this newly defined task. In addition, we propose a method based on segment transcription as one way to solve the task. Our demo and dataset are available at https://github.com/Mippia/ICASSP2026-MPD.
Abstract:With the rise of generative AI technology, anyone can now easily create and deploy AI-generated music, which has heightened the need for technical solutions to address copyright and ownership issues. While existing works mainly focused on short-audio, the challenge of full-audio detection, which requires modeling long-term structure and context, remains insufficiently explored. To address this, we propose an improved version of the Segment Transformer, termed the Fusion Segment Transformer. As in our previous work, we extract content embeddings from short music segments using diverse feature extractors. Furthermore, we enhance the architecture for full-audio AI-generated music detection by introducing a Gated Fusion Layer that effectively integrates content and structural information, enabling the capture of long-term context. Experiments on the SONICS and AIME datasets show that our approach outperforms the previous model and recent baselines, achieving state-of-the-art results in AI-generated music detection.
Abstract:As a result of continuous advances in Music Information Retrieval (MIR) technology, generating and distributing music has become more diverse and accessible. In this context, interest in music intellectual property protection is increasing to safeguard individual music copyrights. In this work, we propose a system for detecting music plagiarism by combining various MIR technologies. We developed a music segment transcription system that extracts musically meaningful segments from audio recordings to detect plagiarism across different musical formats. With this system, we compute similarity scores based on multiple musical features that can be evaluated through comprehensive musical analysis. Our approach demonstrated promising results in music plagiarism detection experiments, and the proposed method can be applied to real-world music scenarios. We also collected a Similar Music Pair (SMP) dataset for musical similarity research using real-world cases. The dataset are publicly available.
Abstract:Audio and music generation systems have been remarkably developed in the music information retrieval (MIR) research field. The advancement of these technologies raises copyright concerns, as ownership and authorship of AI-generated music (AIGM) remain unclear. Also, it can be difficult to determine whether a piece was generated by AI or composed by humans clearly. To address these challenges, we aim to improve the accuracy of AIGM detection by analyzing the structural patterns of music segments. Specifically, to extract musical features from short audio clips, we integrated various pre-trained models, including self-supervised learning (SSL) models or an audio effect encoder, each within our suggested transformer-based framework. Furthermore, for long audio, we developed a segment transformer that divides music into segments and learns inter-segment relationships. We used the FakeMusicCaps and SONICS datasets, achieving high accuracy in both the short-audio and full-audio detection experiments. These findings suggest that integrating segment-level musical features into long-range temporal analysis can effectively enhance both the performance and robustness of AIGM detection systems.
Abstract:In this work, we propose a symbolic music generation model with the song structure graph analysis network. We construct a graph that uses information such as note sequence and instrument as node features, while the correlation between note sequences acts as the edge feature. We trained a Graph Neural Network to obtain node representation in the graph, then we use node representation as input of Unet to generate CONLON pianoroll image latent. The outcomes of our experimental results show that the proposed model can generate a comprehensive form of music. Our approach represents a promising and innovative method for symbolic music generation and holds potential applications in various fields in Music Information Retreival, including music composition, music classification, and music inpainting systems.
Abstract:As digital music production has become mainstream, the selection of appropriate virtual instruments plays a crucial role in determining the quality of music. To search the musical instrument samples or virtual instruments that make one's desired sound, music producers use their ears to listen and compare each instrument sample in their collection, which is time-consuming and inefficient. In this paper, we call this task as Musical Instrument Retrieval and propose a method for retrieving desired musical instruments using reference music mixture as a query. The proposed model consists of the Single-Instrument Encoder and the Multi-Instrument Encoder, both based on convolutional neural networks. The Single-Instrument Encoder is trained to classify the instruments used in single-track audio, and we take its penultimate layer's activation as the instrument embedding. The Multi-Instrument Encoder is trained to estimate multiple instrument embeddings using the instrument embeddings computed by the Single-Instrument Encoder as a set of target embeddings. For more generalized training and realistic evaluation, we also propose a new dataset called Nlakh. Experimental results showed that the Single-Instrument Encoder was able to learn the mapping from the audio signal of unseen instruments to the instrument embedding space and the Multi-Instrument Encoder was able to extract multiple embeddings from the mixture of music and retrieve the desired instruments successfully. The code used for the experiment and audio samples are available at: https://github.com/minju0821/musical_instrument_retrieval