Abstract:Efficiently retrieving specific instrument timbres from audio mixtures remains a challenge in digital music production. This paper introduces a contrastive learning framework for musical instrument retrieval, enabling direct querying of instrument databases using a single model for both single- and multi-instrument sounds. We propose techniques to generate realistic positive/negative pairs of sounds for virtual musical instruments, such as samplers and synthesizers, addressing limitations in common audio data augmentation methods. The first experiment focuses on instrument retrieval from a dataset of 3,884 instruments, using single-instrument audio as input. Contrastive approaches are competitive with previous works based on classification pre-training. The second experiment considers multi-instrument retrieval with a mixture of instruments as audio input. In this case, the proposed contrastive framework outperforms related works, achieving 81.7\% top-1 and 95.7\% top-5 accuracies for three-instrument mixtures.
Abstract:Sound synthesizers are widespread in modern music production but they increasingly require expert skills to be mastered. This work focuses on interpolation between presets, i.e., sets of values of all sound synthesis parameters, to enable the intuitive creation of new sounds from existing ones. We introduce a bimodal auto-encoder neural network, which simultaneously processes presets using multi-head attention blocks, and audio using convolutions. This model has been tested on a popular frequency modulation synthesizer with more than one hundred parameters. Experiments have compared the model to related architectures and methods, and have demonstrated that it performs smoother interpolations. After training, the proposed model can be integrated into commercial synthesizers for live interpolation or sound design tasks.