Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.




Human pose forecasting predicts future poses based on past observations, and has many significant applications in areas such as action recognition, autonomous driving or human-robot interaction. This paper evaluates a wide range of pose forecasting algorithms in the task of absolute pose forecasting, revealing many reproducibility issues, and provides a unified training and evaluation pipeline. After drawing a high-level analogy to the task of speech understanding, it is shown that recent speech models can be efficiently adapted to the task of pose forecasting, and improve current state-of-the-art performance. At last the robustness of the models is evaluated, using noisy joint coordinates obtained from a pose estimator model, to reflect a realistic type of noise, which is more close to real-world applications. For this a new dataset variation is introduced, and it is shown that estimated poses result in a substantial performance degradation, and how much of it can be recovered again by unsupervised finetuning.




This paper presents a systematic evaluation of racial bias in four major commercial automatic speech recognition (ASR) systems using the Pacific Northwest English (PNWE) corpus. We analyze transcription accuracy across speakers from four ethnic backgrounds (African American, Caucasian American, ChicanX, and Yakama) and examine how sociophonetic variation contributes to differential system performance. We introduce a heuristically-determined Phonetic Error Rate (PER) metric that links recognition errors to specific linguistically motivated variables derived from sociophonetic annotation. Our analysis of eleven sociophonetic features reveals that vowel quality variation, particularly resistance to the low-back merger and pre-nasal merger patterns, is systematically associated with differential error rates across ethnic groups, with the most pronounced effects for African American speakers across all evaluated systems. These findings demonstrate that acoustic modeling of dialectal phonetic variation, rather than lexical or syntactic factors, remains a primary source of bias in commercial ASR systems. The study establishes the PNWE corpus as a valuable resource for bias evaluation in speech technologies and provides actionable guidance for improving ASR performance through targeted representation of sociophonetic diversity in training data.
Tibetan, one of the major low-resource languages in Asia, presents unique linguistic and sociocultural characteristics that pose both challenges and opportunities for AI research. Despite increasing interest in developing AI systems for underrepresented languages, Tibetan has received limited attention due to a lack of accessible data resources, standardized benchmarks, and dedicated tools. This paper provides a comprehensive survey of the current state of Tibetan AI in the AI domain, covering textual and speech data resources, NLP tasks, machine translation, speech recognition, and recent developments in LLMs. We systematically categorize existing datasets and tools, evaluate methods used across different tasks, and compare performance where possible. We also identify persistent bottlenecks such as data sparsity, orthographic variation, and the lack of unified evaluation metrics. Additionally, we discuss the potential of cross-lingual transfer, multi-modal learning, and community-driven resource creation. This survey aims to serve as a foundational reference for future work on Tibetan AI research and encourages collaborative efforts to build an inclusive and sustainable AI ecosystem for low-resource languages.
Over 70 million people worldwide experience stuttering, yet most automatic speech systems misinterpret disfluent utterances or fail to transcribe them accurately. Existing methods for stutter correction rely on handcrafted feature extraction or multi-stage automatic speech recognition (ASR) and text-to-speech (TTS) pipelines, which separate transcription from audio reconstruction and often amplify distortions. This work introduces StutterZero and StutterFormer, the first end-to-end waveform-to-waveform models that directly convert stuttered speech into fluent speech while jointly predicting its transcription. StutterZero employs a convolutional-bidirectional LSTM encoder-decoder with attention, whereas StutterFormer integrates a dual-stream Transformer with shared acoustic-linguistic representations. Both architectures are trained on paired stuttered-fluent data synthesized from the SEP-28K and LibriStutter corpora and evaluated on unseen speakers from the FluencyBank dataset. Across all benchmarks, StutterZero had a 24% decrease in Word Error Rate (WER) and a 31% improvement in semantic similarity (BERTScore) compared to the leading Whisper-Medium model. StutterFormer achieved better results, with a 28% decrease in WER and a 34% improvement in BERTScore. The results validate the feasibility of direct end-to-end stutter-to-fluent speech conversion, offering new opportunities for inclusive human-computer interaction, speech therapy, and accessibility-oriented AI systems.




Pre-trained transformer-based models have significantly advanced automatic speech recognition (ASR), yet they remain sensitive to accent and dialectal variations, resulting in elevated word error rates (WER) in linguistically diverse languages such as English and Persian. To address this challenge, we propose an accent-invariant ASR framework that integrates accent and dialect classification into the recognition pipeline. Our approach involves training a spectrogram-based classifier to capture accent-specific cues, masking the regions most influential to its predictions, and using the masked spectrograms for data augmentation. This enhances the robustness of ASR models against accent variability. We evaluate the method using both English and Persian speech. For Persian, we introduce a newly collected dataset spanning multiple regional accents, establishing the first systematic benchmark for accent variation in Persian ASR that fills a critical gap in multilingual speech research and provides a foundation for future studies on low-resource, linguistically diverse languages. Experimental results with the Whisper model demonstrate that our masking and augmentation strategy yields substantial WER reductions in both English and Persian settings, confirming the effectiveness of the approach. This research advances the development of multilingual ASR systems that are resilient to accent and dialect diversity. Code and dataset are publicly available at: https://github.com/MH-Sameti/Accent_invariant_ASR
Whisper models have achieved remarkable progress in speech recognition; yet their large size remains a bottleneck for deployment on resource-constrained edge devices. This paper proposes a framework to design fine-tuned variants of Whisper which address the above problem. Structured sparsity is enforced via the Sparse Group LASSO penalty as a loss regularizer, to reduce the number of FLOating Point operations (FLOPs). Further, a weight statistics aware pruning algorithm is proposed. We also design our custom text normalizer for WER evaluation. On Common Voice 11.0 Hindi dataset, we obtain, without degrading WER, (a) 35.4% reduction in model parameters, 14.25% lower memory consumption and 18.5% fewer FLOPs on Whisper-small, and (b) 31% reduction in model parameters, 15.29% lower memory consumption and 16.95% fewer FLOPs on Whisper-medium; and, (c) substantially outperform the state-of-the-art Iterative Magnitude Pruning based method by pruning 18.7% more parameters along with a 12.31 reduction in WER.
Speech Language Models (SLMs) have made significant progress in spoken language understanding. Yet it remains unclear whether they can fully perceive non lexical vocal cues alongside spoken words, and respond with empathy that aligns with both emotional and contextual factors. Existing benchmarks typically evaluate linguistic, acoustic, reasoning, or dialogue abilities in isolation, overlooking the integration of these skills that is crucial for human-like, emotionally intelligent conversation. We present EchoMind, the first interrelated, multi-level benchmark that simulates the cognitive process of empathetic dialogue through sequential, context-linked tasks: spoken-content understanding, vocal-cue perception, integrated reasoning, and response generation. All tasks share identical and semantically neutral scripts that are free of explicit emotional or contextual cues, and controlled variations in vocal style are used to test the effect of delivery independent of the transcript. EchoMind is grounded in an empathy-oriented framework spanning 3 coarse and 12 fine-grained dimensions, encompassing 39 vocal attributes, and evaluated using both objective and subjective metrics. Testing 12 advanced SLMs reveals that even state-of-the-art models struggle with high-expressive vocal cues, limiting empathetic response quality. Analyses of prompt strength, speech source, and ideal vocal cue recognition reveal persistent weaknesses in instruction-following, resilience to natural speech variability, and effective use of vocal cues for empathy. These results underscore the need for SLMs that integrate linguistic content with diverse vocal cues to achieve truly empathetic conversational ability.
As large language models transition from text-based interfaces to audio interactions in clinical settings, they might introduce new vulnerabilities through paralinguistic cues in audio. We evaluated these models on 170 clinical cases, each synthesized into speech from 36 distinct voice profiles spanning variations in age, gender, and emotion. Our findings reveal a severe modality bias: surgical recommendations for audio inputs varied by as much as 35% compared to identical text-based inputs, with one model providing 80% fewer recommendations. Further analysis uncovered age disparities of up to 12% between young and elderly voices, which persisted in most models despite chain-of-thought prompting. While explicit reasoning successfully eliminated gender bias, the impact of emotion was not detected due to poor recognition performance. These results demonstrate that audio LLMs are susceptible to making clinical decisions based on a patient's voice characteristics rather than medical evidence, a flaw that risks perpetuating healthcare disparities. We conclude that bias-aware architectures are essential and urgently needed before the clinical deployment of these models.
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech




Recent advancements in adversarial attacks have demonstrated their effectiveness in misleading speaker recognition models, making wrong predictions about speaker identities. On the other hand, defense techniques against speaker-adversarial attacks focus on reducing the effects of speaker-adversarial perturbations on speaker attribute extraction. These techniques do not seek to fully remove the perturbations and restore the original speech. To this end, this paper studies the removability of speaker-adversarial perturbations. Specifically, the investigation is conducted assuming various degrees of awareness of the perturbation generator across three scenarios: ignorant, semi-informed, and well-informed. Besides, we consider both the optimization-based and feedforward perturbation generation methods. Experiments conducted on the LibriSpeech dataset demonstrated that: 1) in the ignorant scenario, speaker-adversarial perturbations cannot be eliminated, although their impact on speaker attribute extraction is reduced, 2) in the semi-informed scenario, the speaker-adversarial perturbations cannot be fully removed, while those generated by the feedforward model can be considerably reduced, and 3) in the well-informed scenario, speaker-adversarial perturbations are nearly eliminated, allowing for the restoration of the original speech. Audio samples can be found in https://voiceprivacy.github.io/Perturbation-Generation-Removal/.