Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
In this paper, we introduce TEDxTN, the first publicly available Tunisian Arabic to English speech translation dataset. This work is in line with the ongoing effort to mitigate the data scarcity obstacle for a number of Arabic dialects. We collected, segmented, transcribed and translated 108 TEDx talks following our internally developed annotations guidelines. The collected talks represent 25 hours of speech with code-switching that cover speakers with various accents from over 11 different regions of Tunisia. We make the annotation guidelines and corpus publicly available. This will enable the extension of TEDxTN to new talks as they become available. We also report results for strong baseline systems of Speech Recognition and Speech Translation using multiple pre-trained and fine-tuned end-to-end models. This corpus is the first open source and publicly available speech translation corpus of Code-Switching Tunisian dialect. We believe that this is a valuable resource that can motivate and facilitate further research on the natural language processing of Tunisian Dialect.




We present MERaLiON-SER, a robust speech emotion recognition model designed for English and Southeast Asian languages. The model is trained using a hybrid objective combining weighted categorical cross-entropy and Concordance Correlation Coefficient (CCC) losses for joint discrete and dimensional emotion modelling. This dual approach enables the model to capture both the distinct categories of emotion (like happy or angry) and the fine-grained, such as arousal (intensity), valence (positivity/negativity), and dominance (sense of control), leading to a more comprehensive and robust representation of human affect. Extensive evaluations across multilingual Singaporean languages (English, Chinese, Malay, and Tamil ) and other public benchmarks show that MERaLiON-SER consistently surpasses both open-source speech encoders and large Audio-LLMs. These results underscore the importance of specialised speech-only models for accurate paralinguistic understanding and cross-lingual generalisation. Furthermore, the proposed framework provides a foundation for integrating emotion-aware perception into future agentic audio systems, enabling more empathetic and contextually adaptive multimodal reasoning.




Lexical tone is central to many languages but remains underexplored in self-supervised learning (SSL) speech models, especially beyond Mandarin. We study four languages with complex and diverse tone systems: Burmese, Thai, Lao, and Vietnamese, to examine how far such models listen for tone and how transfer operates in low-resource conditions. As a baseline reference, we estimate the temporal span of tone cues to be about 100 ms in Burmese and Thai, and about 180 ms in Lao and Vietnamese. Probes and gradient analyses on fine-tuned SSL models reveal that tone transfer varies by downstream task: automatic speech recognition fine-tuning aligns spans with language-specific tone cues, while prosody- and voice-related tasks bias the model toward overly long spans. These findings indicate that tone transfer is shaped by downstream task, highlighting task effects on temporal focus in tone modeling.




Robustness verification is a promising technique for rigorously proving Recurrent Neural Networks (RNNs) robustly. A key challenge is to over-approximate the nonlinear activation functions with linear constraints, which can transform the verification problem into an efficiently solvable linear programming problem. Existing methods over-approximate the nonlinear parts with linear bounding planes individually, which may cause significant over-estimation and lead to lower verification accuracy. In this paper, in order to tightly enclose the three-dimensional nonlinear surface generated by the Hadamard product, we propose a novel truncated rectangular prism formed by two linear relaxation planes and a refinement-driven method to minimize both its volume and surface area for tighter over-approximation. Based on this approximation, we implement a prototype DeepPrism for RNN robustness verification. The experimental results demonstrate that \emph{DeepPrism} has significant improvement compared with the state-of-the-art approaches in various tasks of image classification, speech recognition and sentiment analysis.
Significant progress has been made in spoken question answering (SQA) in recent years. However, many existing methods, including large audio language models, struggle with processing long audio. Follow the success of retrieval augmented generation, a speech-related retriever shows promising in help preprocessing long-form speech. But the performance of existing speech-related retrievers is lacking. To address this challenge, we propose CLSR, an end-to-end contrastive language-speech retriever that efficiently extracts question-relevant segments from long audio recordings for downstream SQA task. Unlike conventional speech-text contrastive models, CLSR incorporates an intermediate step that converts acoustic features into text-like representations prior to alignment, thereby more effectively bridging the gap between modalities. Experimental results across four cross-modal retrieval datasets demonstrate that CLSR surpasses both end-to-end speech related retrievers and pipeline approaches combining speech recognition with text retrieval, providing a robust foundation for advancing practical long-form SQA applications.
Large speech recognition models like Whisper-small achieve high accuracy but are difficult to deploy on edge devices due to their high computational demand. To this end, we present a unified, cross-library evaluation of post-training quantization (PTQ) on Whisper-small that disentangles the impact of quantization scheme, method, granularity, and bit-width. Our study is based on four libraries: PyTorch, Optimum-Quanto, HQQ, and bitsandbytes. Experiments on LibriSpeech test-clean and test-other show that dynamic int8 quantization with Quanto offers the best trade-off, reducing model size by 57% while improving on the baseline's word error rate. Static quantization performed worse, likely due to Whisper's Transformer architecture, while more aggressive formats (e.g., nf4, int3) achieved up to 71% compression at the cost of accuracy in noisy conditions. Overall, our results demonstrate that carefully chosen PTQ methods can substantially reduce model size and inference cost without retraining, enabling efficient deployment of Whisper-small on constrained hardware.




In da Vinci robotic surgery, surgeons' hands and eyes are fully engaged in the procedure, making it difficult to access and manipulate multimodal patient data without interruption. We propose a voice-directed Surgical Agent Orchestrator Platform (SAOP) built on a hierarchical multi-agent framework, consisting of an orchestration agent and three task-specific agents driven by Large Language Models (LLMs). These LLM-based agents autonomously plan, refine, validate, and reason to map voice commands into specific tasks such as retrieving clinical information, manipulating CT scans, or navigating 3D anatomical models on the surgical video. We also introduce a Multi-level Orchestration Evaluation Metric (MOEM) to comprehensively assess the performance and robustness from command-level and category-level perspectives. The SAOP achieves high accuracy and success rates across 240 voice commands, while LLM-based agents improve robustness against speech recognition errors and diverse or ambiguous free-form commands, demonstrating strong potential to support minimally invasive da Vinci robotic surgery.




Recent advancements in speech synthesis technology have enriched our daily lives, with high-quality and human-like audio widely adopted across real-world applications. However, malicious exploitation like voice-cloning fraud poses severe security risks. Existing defense techniques struggle to address the production large language model (LLM)-based speech synthesis. While previous studies have considered the protection for fine-tuning synthesizers, they assume manually annotated transcripts. Given the labor intensity of manual annotation, end-to-end (E2E) systems leveraging automatic speech recognition (ASR) to generate transcripts are becoming increasingly prevalent, e.g., voice cloning via commercial APIs. Therefore, this E2E speech synthesis also requires new security mechanisms. To tackle these challenges, we propose E2E-VGuard, a proactive defense framework for two emerging threats: (1) production LLM-based speech synthesis, and (2) the novel attack arising from ASR-driven E2E scenarios. Specifically, we employ the encoder ensemble with a feature extractor to protect timbre, while ASR-targeted adversarial examples disrupt pronunciation. Moreover, we incorporate the psychoacoustic model to ensure perturbative imperceptibility. For a comprehensive evaluation, we test 16 open-source synthesizers and 3 commercial APIs across Chinese and English datasets, confirming E2E-VGuard's effectiveness in timbre and pronunciation protection. Real-world deployment validation is also conducted. Our code and demo page are available at https://wxzyd123.github.io/e2e-vguard/.




Historical and low-resource NLP remains challenging due to limited annotated data and domain mismatches with modern, web-sourced corpora. This paper outlines our work in using large language models (LLMs) to create ground-truth annotations for historical French (16th-20th centuries) and Chinese (1900-1950) texts. By leveraging LLM-generated ground truth on a subset of our corpus, we were able to fine-tune spaCy to achieve significant gains on period-specific tests for part-of-speech (POS) annotations, lemmatization, and named entity recognition (NER). Our results underscore the importance of domain-specific models and demonstrate that even relatively limited amounts of synthetic data can improve NLP tools for under-resourced corpora in computational humanities research.




Human pose forecasting predicts future poses based on past observations, and has many significant applications in areas such as action recognition, autonomous driving or human-robot interaction. This paper evaluates a wide range of pose forecasting algorithms in the task of absolute pose forecasting, revealing many reproducibility issues, and provides a unified training and evaluation pipeline. After drawing a high-level analogy to the task of speech understanding, it is shown that recent speech models can be efficiently adapted to the task of pose forecasting, and improve current state-of-the-art performance. At last the robustness of the models is evaluated, using noisy joint coordinates obtained from a pose estimator model, to reflect a realistic type of noise, which is more close to real-world applications. For this a new dataset variation is introduced, and it is shown that estimated poses result in a substantial performance degradation, and how much of it can be recovered again by unsupervised finetuning.