Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Automatic Speech Recognition (ASR) systems often fail to accurately transcribe speech from Deaf and Hard of Hearing (DHH) individuals, especially during real-time conversations. Existing personalization approaches typically require extensive pre-recorded data and place the burden of adaptation on the DHH speaker. We present EvolveCaptions, a real-time, collaborative ASR adaptation system that supports in-situ personalization with minimal effort. Hearing participants correct ASR errors during live conversations. Based on these corrections, the system generates short, phonetically targeted prompts for the DHH speaker to record, which are then used to fine-tune the ASR model. In a study with 12 DHH and six hearing participants, EvolveCaptions reduced Word Error Rate (WER) across all DHH users within one hour of use, using only five minutes of recording time on average. Participants described the system as intuitive, low-effort, and well-integrated into communication. These findings demonstrate the promise of collaborative, real-time ASR adaptation for more equitable communication.
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
Personalizing Automatic Speech Recognition (ASR) for dysarthric speech is crucial but challenging due to training and storing of individual user adapters. We propose a hybrid meta-training method for a single model, excelling in zero-shot and few-shot on-the-fly personalization via in-context learning (ICL). Measuring Word Error Rate (WER) on state-of-the-art subsets, the model achieves 13.9% WER on Euphonia which surpasses speaker-independent baselines (17.5% WER) and rivals user-specific personalized models. On SAP Test 1, its 5.3% WER significantly bests the 8% from even personalized adapters. We also demonstrate the importance of example curation, where an oracle text-similarity method shows 5 curated examples can achieve performance similar to 19 randomly selected ones, highlighting a key area for future efficiency gains. Finally, we conduct data ablations to measure the data efficiency of this approach. This work presents a practical, scalable, and personalized solution.




The performance of speech emotion recognition (SER) is limited by the insufficient emotion information in unimodal systems and the feature alignment difficulties in multimodal systems. Recently, multimodal large language models (MLLMs) have made progress in SER. However, MLLMs still suffer from hallucination and misclassification problems in complex emotion reasoning. To address these problems, we propose an MLLM-based framework called EmoQ, which generates query embeddings that fuse multimodal information through an EmoQ-Former and uses multi-objective affective learning (MAL) to achieve co-optimization. The framework also provides a soft-prompt injection strategy to inject multimodal representations into the LLM. This end-to-end architecture achieves state-of-the-art performance on the IEMOCAP and MELD datasets, providing a new multimodal fusion paradigm for SER.
Visual speech recognition (VSR), also known as lip reading, is the task of recognizing speech from silent video. Despite significant advancements in VSR over recent decades, most existing methods pay limited attention to real-world visual challenges such as illumination variations, occlusions, blurring, and pose changes. To address these challenges, we propose GLip, a Global-Local Integrated Progressive framework designed for robust VSR. GLip is built upon two key insights: (i) learning an initial \textit{coarse} alignment between visual features across varying conditions and corresponding speech content facilitates the subsequent learning of \textit{precise} visual-to-speech mappings in challenging environments; (ii) under adverse conditions, certain local regions (e.g., non-occluded areas) often exhibit more discriminative cues for lip reading than global features. To this end, GLip introduces a dual-path feature extraction architecture that integrates both global and local features within a two-stage progressive learning framework. In the first stage, the model learns to align both global and local visual features with corresponding acoustic speech units using easily accessible audio-visual data, establishing a coarse yet semantically robust foundation. In the second stage, we introduce a Contextual Enhancement Module (CEM) to dynamically integrate local features with relevant global context across both spatial and temporal dimensions, refining the coarse representations into precise visual-speech mappings. Our framework uniquely exploits discriminative local regions through a progressive learning strategy, demonstrating enhanced robustness against various visual challenges and consistently outperforming existing methods on the LRS2 and LRS3 benchmarks. We further validate its effectiveness on a newly introduced challenging Mandarin dataset.
Recent benchmarks evaluating pre-trained models (PTMs) for cross-corpus speech emotion recognition (SER) have overlooked PTM pre-trained for paralinguistic speech processing (PSP), raising concerns about their reliability, since SER is inherently a paralinguistic task. We hypothesize that PSP-focused PTM will perform better in cross-corpus SER settings. To test this, we analyze state-of-the-art PTMs representations including paralinguistic, monolingual, multilingual, and speaker recognition. Our results confirm that TRILLsson (a paralinguistic PTM) outperforms others, reinforcing the need to consider PSP-focused PTMs in cross-corpus SER benchmarks. This study enhances benchmark trustworthiness and guides PTMs evaluations for reliable cross-corpus SER.




We present a wearable, fully-dry, and ultra-low power EMG system for silent speech recognition, integrated into a textile neckband to enable comfortable, non-intrusive use. The system features 14 fully-differential EMG channels and is based on the BioGAP-Ultra platform for ultra-low power (22 mW) biosignal acquisition and wireless transmission. We evaluate its performance on eight speech commands under both vocalized and silent articulation, achieving average classification accuracies of 87$\pm$3% and 68$\pm$3% respectively, with a 5-fold CV approach. To mimic everyday-life conditions, we introduce session-to-session variability by repositioning the neckband between sessions, achieving leave-one-session-out accuracies of 64$\pm$18% and 54$\pm$7% for the vocalized and silent experiments, respectively. These results highlight the robustness of the proposed approach and the promise of energy-efficient silent-speech decoding.
Low latency speech human-machine communication is becoming increasingly necessary as speech technology advances quickly in the last decade. One of the primary factors behind the advancement of speech technology is self-supervised learning. Most self-supervised learning algorithms are designed with full utterance assumption and compromises have to made if partial utterances are presented, which are common in the streaming applications. In this work, we propose a chunk based self-supervised learning (Chunk SSL) algorithm as an unified solution for both streaming and offline speech pre-training. Chunk SSL is optimized with the masked prediction loss and an acoustic encoder is encouraged to restore indices of those masked speech frames with help from unmasked frames in the same chunk and preceding chunks. A copy and append data augmentation approach is proposed to conduct efficient chunk based pre-training. Chunk SSL utilizes a finite scalar quantization (FSQ) module to discretize input speech features and our study shows a high resolution FSQ codebook, i.e., a codebook with vocabulary size up to a few millions, is beneficial to transfer knowledge from the pre-training task to the downstream tasks. A group masked prediction loss is employed during pre-training to alleviate the high memory and computation cost introduced by the large codebook. The proposed approach is examined in two speech to text tasks, i.e., speech recognition and speech translation. Experimental results on the \textsc{Librispeech} and \textsc{Must-C} datasets show that the proposed method could achieve very competitive results for speech to text tasks at both streaming and offline modes.




Recent advancements in adversarial attacks have demonstrated their effectiveness in misleading speaker recognition models, making wrong predictions about speaker identities. On the other hand, defense techniques against speaker-adversarial attacks focus on reducing the effects of speaker-adversarial perturbations on speaker attribute extraction. These techniques do not seek to fully remove the perturbations and restore the original speech. To this end, this paper studies the removability of speaker-adversarial perturbations. Specifically, the investigation is conducted assuming various degrees of awareness of the perturbation generator across three scenarios: ignorant, semi-informed, and well-informed. Besides, we consider both the optimization-based and feedforward perturbation generation methods. Experiments conducted on the LibriSpeech dataset demonstrated that: 1) in the ignorant scenario, speaker-adversarial perturbations cannot be eliminated, although their impact on speaker attribute extraction is reduced, 2) in the semi-informed scenario, the speaker-adversarial perturbations cannot be fully removed, while those generated by the feedforward model can be considerably reduced, and 3) in the well-informed scenario, speaker-adversarial perturbations are nearly eliminated, allowing for the restoration of the original speech. Audio samples can be found in https://voiceprivacy.github.io/Perturbation-Generation-Removal/.




The advancement of multimodal large language models has accelerated the development of speech-to-speech interaction systems. While natural monolingual interaction has been achieved, we find existing models exhibit deficiencies in language alignment. In our proposed Code-Switching Speech-to-Speech Benchmark (CS3-Bench), experiments on 7 mainstream models demonstrate a relative performance drop of up to 66% in knowledge-intensive question answering and varying degrees of misunderstanding in open-ended conversations. Starting from a model with severe performance deterioration, we propose both data constructions and training approaches to improve the language alignment capabilities, specifically employing Chain of Recognition (CoR) to enhance understanding and Keyword Highlighting (KH) to guide generation. Our approach improves the knowledge accuracy from 25.14% to 46.13%, with open-ended understanding rate from 64.5% to 86.5%, and significantly reduces pronunciation errors in the secondary language. CS3-Bench is available at https://huggingface.co/datasets/VocalNet/CS3-Bench.