Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Inverse synthetic aperture radar (ISAR) images generated from single-channel automotive radar data provide critical information about the shape and size of automotive targets. However, the quality of ISAR images degrades due to road clutter and when translational and higher order rotational motions of the targets are not suitably compensated. One method to enhance the signal-to-clutter-and-noise ratio (SCNR) of the systems is to leverage the advantages of the multiple-input-multiple-output (MIMO) framework available in commercial automotive radars to generate MIMO-ISAR images. While substantial research has been devoted to motion compensation of single-channel ISAR images, the effectiveness of these methods for MIMO-ISAR has not been studied extensively. This paper analyzes the performance of three popular motion compensation techniques - entropy minimization, cross-correlation, and phase gradient autofocus - on MIMO-ISAR. The algorithms are evaluated on the measurement data collected using Texas Instruments millimeter-wave MIMO radar. The results indicate that the cross-correlation MOCOMP performs better than the other two MOCOMP algorithms in the MIMO configuration, with an overall improvement of 36%.
Recent studies show that text-to-image models often fail to generate geographically representative images, raising concerns about the representativeness of their training data and motivating the question: which parts of the world do these training examples come from? We geographically profile large-scale multimodal datasets by mapping image-caption pairs to countries based on location information extracted from captions using LLMs. Studying English captions from three widely used datasets (Re-LAION, DataComp1B, and Conceptual Captions) across $20$ common entities (e.g., house, flag), we find that the United States, the United Kingdom, and Canada account for $48.0\%$ of samples, while South American and African countries are severely under-represented with only $1.8\%$ and $3.8\%$ of images, respectively. We observe a strong correlation between a country's GDP and its representation in the data ($ρ= 0.82$). Examining non-English subsets for $4$ languages from the Re-LAION dataset, we find that representation skews heavily toward countries where these languages are predominantly spoken. Additionally, we find that higher representation does not necessarily translate to greater visual or semantic diversity. Finally, analyzing country-specific images generated by Stable Diffusion v1.3 trained on Re-LAION, we show that while generations appear realistic, they are severely limited in their coverage compared to real-world images.
Food segmentation models trained on static images have achieved strong performance on benchmark datasets; however, their reliability in video settings remains poorly understood. In real-world applications such as food monitoring and instance counting, segmentation outputs must be temporally consistent, yet image-trained models often break down when deployed on videos. In this work, we analyze this failure through an instance segmentation and tracking perspective, focusing on apples as a representative food category. Models are trained solely on image-level food segmentation data and evaluated on video sequences using an instance segmentation with tracking-by-matching framework, enabling object-level temporal analysis. Our results reveal that high frame-wise segmentation accuracy does not translate to stable instance identities over time. Temporal appearance variations, particularly illumination changes, specular reflections, and texture ambiguity, lead to mask flickering and identity fragmentation, resulting in significant errors in apple counting. These failures are largely overlooked by conventional image-based metrics, which substantially overestimate real-world video performance. Beyond diagnosing the problem, we examine practical remedies that do not require full video supervision, including post-hoc temporal regularization and self-supervised temporal consistency objectives. Our findings suggest that the root cause of failure lies in image-centric training objectives that ignore temporal coherence, rather than model capacity. This study highlights a critical evaluation gap in food segmentation research and motivates temporally-aware learning and evaluation protocols for video-based food analysis.
Purpose: Translating foundation models into clinical practice requires evaluating their performance under compound distribution shift, where severe class imbalance coexists with heterogeneous imaging appearances. This challenge is relevant for traumatic bowel injury, a rare but high-mortality diagnosis. We investigated whether specificity deficits in foundation models are associated with heterogeneity in the negative class. Methods: This retrospective study used the multi-institutional, RSNA Abdominal Traumatic Injury CT dataset (2019-2023), comprising scans from 23 centres. Two foundation models (MedCLIP, zero-shot; RadDINO, linear probe) were compared against three task-specific approaches (CNN, Transformer, Ensemble). Models were trained on 3,147 patients (2.3% bowel injury prevalence) and evaluated on an enriched 100-patient test set. To isolate negative-class effects, specificity was assessed in patients without bowel injury who had concurrent solid organ injury (n=58) versus no abdominal pathology (n=50). Results: Foundation models achieved equivalent discrimination to task-specific models (AUC, 0.64-0.68 versus 0.58-0.64) with higher sensitivity (79-91% vs 41-74%) but lower specificity (33-50% vs 50-88%). All models demonstrated high specificity in patients without abdominal pathology (84-100%). When solid organ injuries were present, specificity declined substantially for foundation models (50-51 percentage points) compared with smaller reductions of 12-41 percentage points for task-specific models. Conclusion: Foundation models matched task-specific discrimination without task-specific training, but their specificity deficits were driven primarily by confounding negative-class heterogeneity rather than prevalence alone. Susceptibility to negative-class heterogeneity decreased progressively with labelled training, suggesting adaptation is required before clinical implementation.
Recent advances in diffusion models have significantly improved image editing. However, challenges persist in handling geometric transformations, such as translation, rotation, and scaling, particularly in complex scenes. Existing approaches suffer from two main limitations: (1) difficulty in achieving accurate geometric editing of object translation, rotation, and scaling; (2) inadequate modeling of intricate lighting and shadow effects, leading to unrealistic results. To address these issues, we propose GeoEdit, a framework that leverages in-context generation through a diffusion transformer module, which integrates geometric transformations for precise object edits. Moreover, we introduce Effects-Sensitive Attention, which enhances the modeling of intricate lighting and shadow effects for improved realism. To further support training, we construct RS-Objects, a large-scale geometric editing dataset containing over 120,000 high-quality image pairs, enabling the model to learn precise geometric editing while generating realistic lighting and shadows. Extensive experiments on public benchmarks demonstrate that GeoEdit consistently outperforms state-of-the-art methods in terms of visual quality, geometric accuracy, and realism.
This work presents a finite-time stable pose estimator (FTS-PE) for rigid bodies undergoing rotational and translational motion in three dimensions, using measurements from onboard sensors that provide position vectors to inertially-fixed points and body velocities. The FTS-PE is a full-state observer for the pose (position and orientation) and velocities and is obtained through a Lyapunov analysis that shows its stability in finite time and its robustness to bounded measurement noise. Further, this observer is designed directly on the state space, the tangent bundle of the Lie group of rigid body motions, SE(3), without using local coordinates or (dual) quaternion representations. Therefore, it can estimate arbitrary rigid body motions without encountering singularities or the unwinding phenomenon and be readily applied to autonomous vehicles. A version of this observer that does not need translational velocity measurements and uses only point clouds and angular velocity measurements from rate gyros, is also obtained. It is discretized using the framework of geometric mechanics for numerical and experimental implementations. The numerical simulations compare the FTS-PE with a dual-quaternion extended Kalman filter and our previously developed variational pose estimator (VPE). The experimental results are obtained using point cloud images and rate gyro measurements obtained from a Zed 2i stereo depth camera sensor. These results validate the stability and robustness of the FTS-PE.
Autonomous GUI agents interact with environments by perceiving interfaces and executing actions. As a virtual sandbox, the GUI World model empowers agents with human-like foresight by enabling action-conditioned prediction. However, existing text- and pixel-based approaches struggle to simultaneously achieve high visual fidelity and fine-grained structural controllability. To this end, we propose Code2World, a vision-language coder that simulates the next visual state via renderable code generation. Specifically, to address the data scarcity problem, we construct AndroidCode by translating GUI trajectories into high-fidelity HTML and refining synthesized code through a visual-feedback revision mechanism, yielding a corpus of over 80K high-quality screen-action pairs. To adapt existing VLMs into code prediction, we first perform SFT as a cold start for format layout following, then further apply Render-Aware Reinforcement Learning which uses rendered outcome as the reward signal by enforcing visual semantic fidelity and action consistency. Extensive experiments demonstrate that Code2World-8B achieves the top-performing next UI prediction, rivaling the competitive GPT-5 and Gemini-3-Pro-Image. Notably, Code2World significantly enhances downstream navigation success rates in a flexible manner, boosting Gemini-2.5-Flash by +9.5% on AndroidWorld navigation. The code is available at https://github.com/AMAP-ML/Code2World.
Image guided robotic navigation systems often rely on reference based geometric perception pipelines, where accurate spatial mapping is established through multi stage estimation processes. In biplanar X ray guided navigation, such pipelines are widely used due to their real time capability and geometric interpretability. However, navigation reliability can be constrained by an overlooked system level failure mechanism in which installation induced structural perturbations introduced at the perception stage are progressively amplified along the perception reconstruction execution chain and dominate execution level error and tail risk behavior. This paper investigates this mechanism from a system level perspective and presents a unified error propagation modeling framework that characterizes how installation induced structural perturbations propagate and couple with pixel level observation noise through biplanar imaging, projection matrix estimation, triangulation, and coordinate mapping. Using first order analytic uncertainty propagation and Monte Carlo simulations, we analyze dominant sensitivity channels and quantify worst case error behavior beyond mean accuracy metrics. The results show that rotational installation error is a primary driver of system level error amplification, while translational misalignment of comparable magnitude plays a secondary role under typical biplanar geometries. Real biplanar X ray bench top experiments further confirm that the predicted amplification trends persist under realistic imaging conditions. These findings reveal a broader structural limitation of reference based multi stage geometric perception pipelines and provide a framework for system level reliability analysis and risk aware design in safety critical robotic navigation systems.
Increasing convolutional depth has been central to advances in image recognition, yet deeper networks do not uniformly yield higher accuracy, stable optimization, or efficient computation. We present a controlled comparative study of three canonical convolutional neural network architectures - VGG, ResNet, and GoogLeNet - to isolate how depth influences classification performance, convergence behavior, and computational efficiency. By standardizing training protocols and explicitly distinguishing between nominal and effective depth, we show that the benefits of depth depend critically on architectural mechanisms that constrain its effective manifestation during training rather than on nominal depth alone. Although plain deep networks exhibit early accuracy saturation and optimization instability, residual and inception-based architectures consistently translate additional depth into improved accuracy at lower effective depth and favorable accuracy-compute trade-offs. These findings demonstrate that effective depth, not nominal depth, is the operative quantity governing depth's role as a productive scaling dimension in convolutional networks.
We consider the problem of 3D shape recovery from ultra-fast motion-blurred images. While 3D reconstruction from static images has been extensively studied, recovering geometry from extreme motion-blurred images remains challenging. Such scenarios frequently occur in both natural and industrial settings, such as fast-moving objects in sports (e.g., balls) or rotating machinery, where rapid motion distorts object appearance and makes traditional 3D reconstruction techniques like Multi-View Stereo (MVS) ineffective. In this paper, we propose a novel inverse rendering approach for shape recovery from ultra-fast motion-blurred images. While conventional rendering techniques typically synthesize blur by averaging across multiple frames, we identify a major computational bottleneck in the repeated computation of barycentric weights. To address this, we propose a fast barycentric coordinate solver, which significantly reduces computational overhead and achieves a speedup of up to 4.57x, enabling efficient and photorealistic simulation of high-speed motion. Crucially, our method is fully differentiable, allowing gradients to propagate from rendered images to the underlying 3D shape, thereby facilitating shape recovery through inverse rendering. We validate our approach on two representative motion types: rapid translation and rotation. Experimental results demonstrate that our method enables efficient and realistic modeling of ultra-fast moving objects in the forward simulation. Moreover, it successfully recovers 3D shapes from 2D imagery of objects undergoing extreme translational and rotational motion, advancing the boundaries of vision-based 3D reconstruction. Project page: https://maxmilite.github.io/rec-from-ultrafast-blur/