Abstract:Self-supervised image denoising methods have garnered significant research attention in recent years, for this kind of method reduces the requirement of large training datasets. Compared to supervised methods, self-supervised methods rely more on the prior embedded in deep networks themselves. As a result, most of the self-supervised methods are designed with Convolution Neural Networks (CNNs) architectures, which well capture one of the most important image prior, translation equivariant prior. Inspired by the great success achieved by the introduction of translational equivariance, in this paper, we explore the way to further incorporate another important image prior. Specifically, we first apply high-accuracy rotation equivariant convolution to self-supervised image denoising. Through rigorous theoretical analysis, we have proved that simply replacing all the convolution layers with rotation equivariant convolution layers would modify the network into its rotation equivariant version. To the best of our knowledge, this is the first time that rotation equivariant image prior is introduced to self-supervised image denoising at the network architecture level with a comprehensive theoretical analysis of equivariance errors, which offers a new perspective to the field of self-supervised image denoising. Moreover, to further improve the performance, we design a new mask mechanism to fusion the output of rotation equivariant network and vanilla CNN-based network, and construct an adaptive rotation equivariant framework. Through extensive experiments on three typical methods, we have demonstrated the effectiveness of the proposed method.
Abstract:Equivariant and invariant deep learning models have been developed to exploit intrinsic symmetries in data, demonstrating significant effectiveness in certain scenarios. However, these methods often suffer from limited representation accuracy and rely on strict symmetry assumptions that may not hold in practice. These limitations pose a significant drawback for image restoration tasks, which demands high accuracy and precise symmetry representation. To address these challenges, we propose a rotation-equivariant regularization strategy that adaptively enforces the appropriate symmetry constraints on the data while preserving the network's representational accuracy. Specifically, we introduce EQ-Reg, a regularizer designed to enhance rotation equivariance, which innovatively extends the insights of data-augmentation-based and equivariant-based methodologies. This is achieved through self-supervised learning and the spatial rotation and cyclic channel shift of feature maps deduce in the equivariant framework. Our approach firstly enables a non-strictly equivariant network suitable for image restoration, providing a simple and adaptive mechanism for adjusting equivariance based on task. Extensive experiments across three low-level tasks demonstrate the superior accuracy and generalization capability of our method, outperforming state-of-the-art approaches.
Abstract:The deep unfolding approach has attracted significant attention in computer vision tasks, which well connects conventional image processing modeling manners with more recent deep learning techniques. Specifically, by establishing a direct correspondence between algorithm operators at each implementation step and network modules within each layer, one can rationally construct an almost ``white box'' network architecture with high interpretability. In this architecture, only the predefined component of the proximal operator, known as a proximal network, needs manual configuration, enabling the network to automatically extract intrinsic image priors in a data-driven manner. In current deep unfolding methods, such a proximal network is generally designed as a CNN architecture, whose necessity has been proven by a recent theory. That is, CNN structure substantially delivers the translational invariant image prior, which is the most universally possessed structural prior across various types of images. However, standard CNN-based proximal networks have essential limitations in capturing the rotation symmetry prior, another universal structural prior underlying general images. This leaves a large room for further performance improvement in deep unfolding approaches. To address this issue, this study makes efforts to suggest a high-accuracy rotation equivariant proximal network that effectively embeds rotation symmetry priors into the deep unfolding framework. Especially, we deduce, for the first time, the theoretical equivariant error for such a designed proximal network with arbitrary layers under arbitrary rotation degrees. This analysis should be the most refined theoretical conclusion for such error evaluation to date and is also indispensable for supporting the rationale behind such networks with intrinsic interpretability requirements.
Abstract:Although current deep learning-based methods have gained promising performance in the blind single image super-resolution (SISR) task, most of them mainly focus on heuristically constructing diverse network architectures and put less emphasis on the explicit embedding of the physical generation mechanism between blur kernels and high-resolution (HR) images. To alleviate this issue, we propose a model-driven deep neural network, called KXNet, for blind SISR. Specifically, to solve the classical SISR model, we propose a simple-yet-effective iterative algorithm. Then by unfolding the involved iterative steps into the corresponding network module, we naturally construct the KXNet. The main specificity of the proposed KXNet is that the entire learning process is fully and explicitly integrated with the inherent physical mechanism underlying this SISR task. Thus, the learned blur kernel has clear physical patterns and the mutually iterative process between blur kernel and HR image can soundly guide the KXNet to be evolved in the right direction. Extensive experiments on synthetic and real data finely demonstrate the superior accuracy and generality of our method beyond the current representative state-of-the-art blind SISR methods. Code is available at: https://github.com/jiahong-fu/KXNet.