Topic:Fake News Detection
What is Fake News Detection? Fake news detection is a natural language processing task that involves identifying and classifying news articles or other types of text as real or fake. The goal of fake news detection is to develop algorithms that can automatically identify and flag fake news articles, which can be used to combat misinformation and promote the dissemination of accurate information.
Papers and Code
Nov 02, 2023
Abstract:Deepfake attacks, malicious manipulation of media containing people, are a serious concern for society. Conventional deepfake detection methods train supervised classifiers to distinguish real media from previously encountered deepfakes. Such techniques can only detect deepfakes similar to those previously seen, but not zero-day (previously unseen) attack types. As current deepfake generation techniques are changing at a breathtaking pace, new attack types are proposed frequently, making this a major issue. Our main observations are that: i) in many effective deepfake attacks, the fake media must be accompanied by false facts i.e. claims about the identity, speech, motion, or appearance of the person. For instance, when impersonating Obama, the attacker explicitly or implicitly claims that the fake media show Obama; ii) current generative techniques cannot perfectly synthesize the false facts claimed by the attacker. We therefore introduce the concept of "fact checking", adapted from fake news detection, for detecting zero-day deepfake attacks. Fact checking verifies that the claimed facts (e.g. identity is Obama), agree with the observed media (e.g. is the face really Obama's?), and thus can differentiate between real and fake media. Consequently, we introduce FACTOR, a practical recipe for deepfake fact checking and demonstrate its power in critical attack settings: face swapping and audio-visual synthesis. Although it is training-free, relies exclusively on off-the-shelf features, is very easy to implement, and does not see any deepfakes, it achieves better than state-of-the-art accuracy.
Via

Oct 17, 2023
Abstract:With the popularization of the internet, smartphones and social media, information is being spread quickly and easily way, which implies bigger traffic of information in the world, but there is a problem that is harming society with the dissemination of fake news. With a bigger flow of information, some people are trying to disseminate deceptive information and fake news. The automatic detection of fake news is a challenging task because to obtain a good result is necessary to deal with linguistics problems, especially when we are dealing with languages that not have been comprehensively studied yet, besides that, some techniques can help to reach a good result when we are dealing with text data, although, the motivation of detecting this deceptive information it is in the fact that the people need to know which information is true and trustful and which one is not. In this work, we present the effect the pre-processing methods such as lemmatization and stemming have on fake news classification, for that we designed some classifier models applying different pre-processing techniques. The results show that the pre-processing step is important to obtain betters results, the stemming and lemmatization techniques are interesting methods and need to be more studied to develop techniques focused on the Portuguese language so we can reach better results.
Via

Dec 12, 2023
Abstract:The misuse of AI imagery can have harmful societal effects, prompting the creation of detectors to combat issues like the spread of fake news. Existing methods can effectively detect images generated by seen generators, but it is challenging to detect those generated by unseen generators. They do not concentrate on amplifying the output discrepancy when detectors process real versus fake images. This results in a close output distribution of real and fake samples, increasing classification difficulty in detecting unseen generators. This paper addresses the unseen-generator detection problem by considering this task from the perspective of anomaly detection and proposes an adversarial teacher-student discrepancy-aware framework. Our method encourages smaller output discrepancies between the student and the teacher models for real images while aiming for larger discrepancies for fake images. We employ adversarial learning to train a feature augmenter, which promotes smaller discrepancies between teacher and student networks when the inputs are fake images. Our method has achieved state-of-the-art on public benchmarks, and the visualization results show that a large output discrepancy is maintained when faced with various types of generators.
Via

Oct 25, 2023
Abstract:In recent years, we witness the explosion of false and unconfirmed information (i.e., rumors) that went viral on social media and shocked the public. Rumors can trigger versatile, mostly controversial stance expressions among social media users. Rumor verification and stance detection are different yet relevant tasks. Fake news debunking primarily focuses on determining the truthfulness of news articles, which oversimplifies the issue as fake news often combines elements of both truth and falsehood. Thus, it becomes crucial to identify specific instances of misinformation within the articles. In this research, we investigate a novel task in the field of fake news debunking, which involves detecting sentence-level misinformation. One of the major challenges in this task is the absence of a training dataset with sentence-level annotations regarding veracity. Inspired by the Multiple Instance Learning (MIL) approach, we propose a model called Weakly Supervised Detection of Misinforming Sentences (WSDMS). This model only requires bag-level labels for training but is capable of inferring both sentence-level misinformation and article-level veracity, aided by relevant social media conversations that are attentively contextualized with news sentences. We evaluate WSDMS on three real-world benchmarks and demonstrate that it outperforms existing state-of-the-art baselines in debunking fake news at both the sentence and article levels.
* The 2023 Conference on Empirical Methods in Natural Language
Processing
Via

Oct 24, 2023
Abstract:Graph Neural Networks (GNNs) have proven to be quite versatile for a variety of applications, including recommendation systems, fake news detection, drug discovery, and even computer vision. Due to the expanding size of graph-structured data, GNN models have also increased in complexity, leading to substantial latency issues. This is primarily attributed to the irregular structure of graph data and its access pattern into memory. The natural solution to reduce latency is to compress large GNNs into small GNNs. One way to do this is via knowledge distillation (KD). However, most KD approaches for GNNs only consider the outputs of the last layers and do not consider the outputs of the intermediate layers of the GNNs; these layers may contain important inductive biases indicated by the graph structure. To address this shortcoming, we propose a novel KD approach to GNN compression that we call Attention-Based Knowledge Distillation (ABKD). ABKD is a KD approach that uses attention to identify important intermediate teacher-student layer pairs and focuses on aligning their outputs. ABKD enables higher compression of GNNs with a smaller accuracy dropoff compared to existing KD approaches. On average, we achieve a 1.79% increase in accuracy with a 32.3x compression ratio on OGBN-Mag, a large graph dataset, compared to state-of-the-art approaches.
Via

Feb 01, 2024
Abstract:Large language models (LLMs) have exhibited remarkable capabilities in text generation tasks. However, the utilization of these models carries inherent risks, including but not limited to plagiarism, the dissemination of fake news, and issues in educational exercises. Although several detectors have been proposed to address these concerns, their effectiveness against adversarial perturbations, specifically in the context of student essay writing, remains largely unexplored. This paper aims to bridge this gap by constructing AIG-ASAP, an AI-generated student essay dataset, employing a range of text perturbation methods that are expected to generate high-quality essays while evading detection. Through empirical experiments, we assess the performance of current AIGC detectors on the AIG-ASAP dataset. The results reveal that the existing detectors can be easily circumvented using straightforward automatic adversarial attacks. Specifically, we explore word substitution and sentence substitution perturbation methods that effectively evade detection while maintaining the quality of the generated essays. This highlights the urgent need for more accurate and robust methods to detect AI-generated student essays in the education domain.
* Accepted by EMNLP 2023 Main conference, Oral Presentation
Via

Nov 05, 2023
Abstract:Multimodal manipulations (also known as audio-visual deepfakes) make it difficult for unimodal deepfake detectors to detect forgeries in multimedia content. To avoid the spread of false propaganda and fake news, timely detection is crucial. The damage to either modality (i.e., visual or audio) can only be discovered through multi-modal models that can exploit both pieces of information simultaneously. Previous methods mainly adopt uni-modal video forensics and use supervised pre-training for forgery detection. This study proposes a new method based on a multi-modal self-supervised-learning (SSL) feature extractor to exploit inconsistency between audio and visual modalities for multi-modal video forgery detection. We use the transformer-based SSL pre-trained Audio-Visual HuBERT (AV-HuBERT) model as a visual and acoustic feature extractor and a multi-scale temporal convolutional neural network to capture the temporal correlation between the audio and visual modalities. Since AV-HuBERT only extracts visual features from the lip region, we also adopt another transformer-based video model to exploit facial features and capture spatial and temporal artifacts caused during the deepfake generation process. Experimental results show that our model outperforms all existing models and achieves new state-of-the-art performance on the FakeAVCeleb and DeepfakeTIMIT datasets.
Via

Nov 16, 2023
Abstract:Fallacies can be used to spread disinformation, fake news, and propaganda, underlining the importance of their detection. Automated detection and classification of fallacies, however, remain challenging, mainly because of the innate subjectivity of the task and the need for a comprehensive, unified approach in existing research. Addressing these limitations, our study introduces a novel taxonomy of fallacies that aligns and refines previous classifications, a new annotation scheme tailored for subjective NLP tasks, and a new evaluation method designed to handle subjectivity, adapted to precision, recall, and F1-Score metrics. Using our annotation scheme, the paper introduces MAFALDA (Multi-level Annotated FALlacy DAtaset), a gold standard dataset. MAFALDA is based on examples from various previously existing fallacy datasets under our unified taxonomy across three levels of granularity. We then evaluate several language models under a zero-shot learning setting using MAFALDA to assess their fallacy detection and classification capability. Our comprehensive evaluation not only benchmarks the performance of these models but also provides valuable insights into their strengths and limitations in addressing fallacious reasoning.
Via

Jan 09, 2024
Abstract:The recent success in language generation capabilities of large language models (LLMs), such as GPT, Bard, Llama etc., can potentially lead to concerns about their possible misuse in inducing mass agitation and communal hatred via generating fake news and spreading misinformation. Traditional means of developing a misinformation ground-truth dataset does not scale well because of the extensive manual effort required to annotate the data. In this paper, we propose an LLM-based approach of creating silver-standard ground-truth datasets for identifying misinformation. Specifically speaking, given a trusted news article, our proposed approach involves prompting LLMs to automatically generate a summarised version of the original article. The prompts in our proposed approach act as a controlling mechanism to generate specific types of factual incorrectness in the generated summaries, e.g., incorrect quantities, false attributions etc. To investigate the usefulness of this dataset, we conduct a set of experiments where we train a range of supervised models for the task of misinformation detection.
Via

Feb 09, 2024
Abstract:Voice faking, driven primarily by recent advances in text-to-speech (TTS) synthesis technology, poses significant societal challenges. Currently, the prevailing assumption is that unaltered human speech can be considered genuine, while fake speech comes from TTS synthesis. We argue that this binary distinction is oversimplified. For instance, altered playback speeds can be used for malicious purposes, like in the 'Drunken Nancy Pelosi' incident. Similarly, editing of audio clips can be done ethically, e.g., for brevity or summarization in news reporting or podcasts, but editing can also create misleading narratives. In this paper, we propose a conceptual shift away from the binary paradigm of audio being either 'fake' or 'real'. Instead, our focus is on pinpointing 'voice edits', which encompass traditional modifications like filters and cuts, as well as TTS synthesis and VC systems. We delineate 6 categories and curate a new challenge dataset rooted in the M-AILABS corpus, for which we present baseline detection systems. And most importantly, we argue that merely categorizing audio as fake or real is a dangerous over-simplification that will fail to move the field of speech technology forward.
Via
