This paper introduces a novel mobile sensing application - life journaling - designed to generate semantic descriptions of users' daily lives. We present AutoLife, an automatic life journaling system based on commercial smartphones. AutoLife only inputs low-cost sensor data (without photos or audio) from smartphones and can automatically generate comprehensive life journals for users. To achieve this, we first derive time, motion, and location contexts from multimodal sensor data, and harness the zero-shot capabilities of Large Language Models (LLMs), enriched with commonsense knowledge about human lives, to interpret diverse contexts and generate life journals. To manage the task complexity and long sensing duration, a multilayer framework is proposed, which decomposes tasks and seamlessly integrates LLMs with other techniques for life journaling. This study establishes a real-life dataset as a benchmark and extensive experiment results demonstrate that AutoLife produces accurate and reliable life journals.




It is vital to recover 3D geometry from multi-view RGB images in many 3D computer vision tasks. The latest methods infer the geometry represented as a signed distance field by minimizing the rendering error on the field through volume rendering. However, it is still challenging to explicitly impose constraints on surfaces for inferring more geometry details due to the limited ability of sensing surfaces in volume rendering. To resolve this problem, we introduce a method to infer signed distance functions (SDFs) with a better sense of surfaces through volume rendering. Using the gradients and signed distances, we establish a small surface patch centered at the estimated intersection along a ray by pulling points randomly sampled nearby. Hence, we are able to explicitly impose surface constraints on the sensed surface patch, such as multi-view photo consistency and supervision from depth or normal priors, through volume rendering. We evaluate our method by numerical and visual comparisons on scene benchmarks. Our superiority over the latest methods justifies our effectiveness.
What does the presence of a species reveal about a geographic location? We posit that habitat, climate, and environmental preferences reflected in species distributions provide a rich source of supervision for learning satellite image representations. We introduce WildSAT, which pairs satellite images with millions of geo-tagged wildlife observations readily-available on citizen science platforms. WildSAT uses a contrastive learning framework to combine information from species distribution maps with text descriptions that capture habitat and range details, alongside satellite images, to train or fine-tune models. On a range of downstream satellite image recognition tasks, this significantly improves the performance of both randomly initialized models and pre-trained models from sources like ImageNet or specialized satellite image datasets. Additionally, the alignment with text enables zero-shot retrieval, allowing for search based on general descriptions of locations. We demonstrate that WildSAT achieves better representations than recent methods that utilize other forms of cross-modal supervision, such as aligning satellite images with ground images or wildlife photos. Finally, we analyze the impact of various design choices on downstream performance, highlighting the general applicability of our approach.




The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Project page: https://ppetrichor.github.io/levitor.github.io/
Significant progress has been made in photo-realistic scene reconstruction over recent years. Various disparate efforts have enabled capabilities such as multi-appearance or large-scale modeling; however, there lacks a welldesigned dataset that can evaluate the holistic progress of scene reconstruction. We introduce a collection of imagery of the Johns Hopkins Homewood Campus, acquired at different seasons, times of day, in multiple elevations, and across a large scale. We perform a multi-stage calibration process, which efficiently recover camera parameters from phone and drone cameras. This dataset can enable researchers to rigorously explore challenges in unconstrained settings, including effects of inconsistent illumination, reconstruction from large scale and from significantly different perspectives, etc.
While smartphone cameras today can produce astonishingly good photos, their performance in low light is still not completely satisfactory because of the fundamental limits in photon shot noise and sensor read noise. Generative image restoration methods have demonstrated promising results compared to traditional methods, but they suffer from hallucinatory content generation when the signal-to-noise ratio (SNR) is low. Recognizing the availability of personalized photo galleries on users' smartphones, we propose Personalized Generative Denoising (PGD) by building a diffusion model customized for different users. Our core innovation is an identity-consistent physical buffer that extracts the physical attributes of the person from the gallery. This ID-consistent physical buffer provides a strong prior that can be integrated with the diffusion model to restore the degraded images, without the need of fine-tuning. Over a wide range of low-light testing scenarios, we show that PGD achieves superior image denoising and enhancement performance compared to existing diffusion-based denoising approaches.




Recently, zero-shot methods like InstantID have revolutionized identity-preserving generation. Unlike multi-image finetuning approaches such as DreamBooth, these zero-shot methods leverage powerful facial encoders to extract identity information from a single portrait photo, enabling efficient identity-preserving generation through a single inference pass. However, this convenience introduces new threats to the facial identity protection. This paper aims to safeguard portrait photos from unauthorized encoder-based customization. We introduce IDProtector, an adversarial noise encoder that applies imperceptible adversarial noise to portrait photos in a single forward pass. Our approach offers universal protection for portraits against multiple state-of-the-art encoder-based methods, including InstantID, IP-Adapter, and PhotoMaker, while ensuring robustness to common image transformations such as JPEG compression, resizing, and affine transformations. Experiments across diverse portrait datasets and generative models reveal that IDProtector generalizes effectively to unseen data and even closed-source proprietary models.




Real-world design tasks - such as picture book creation, film storyboard development using character sets, photo retouching, visual effects, and font transfer - are highly diverse and complex, requiring deep interpretation and extraction of various elements from instructions, descriptions, and reference images. The resulting images often implicitly capture key features from references or user inputs, making it challenging to develop models that can effectively address such varied tasks. While existing visual generative models can produce high-quality images based on prompts, they face significant limitations in professional design scenarios that involve varied forms and multiple inputs and outputs, even when enhanced with adapters like ControlNets and LoRAs. To address this, we introduce IDEA-Bench, a comprehensive benchmark encompassing 100 real-world design tasks, including rendering, visual effects, storyboarding, picture books, fonts, style-based, and identity-preserving generation, with 275 test cases to thoroughly evaluate a model's general-purpose generation capabilities. Notably, even the best-performing model only achieves 22.48 on IDEA-Bench, while the best general-purpose model only achieves 6.81. We provide a detailed analysis of these results, highlighting the inherent challenges and providing actionable directions for improvement. Additionally, we provide a subset of 18 representative tasks equipped with multimodal large language model (MLLM)-based auto-evaluation techniques to facilitate rapid model development and comparison. We releases the benchmark data, evaluation toolkits, and an online leaderboard at https://github.com/ali-vilab/IDEA-Bench, aiming to drive the advancement of generative models toward more versatile and applicable intelligent design systems.
Face de-identification (DeID) has been widely studied for common scenes, but remains under-researched for medical scenes, mostly due to the lack of large-scale patient face datasets. In this paper, we release MeMa, consisting of over 40,000 photo-realistic patient faces. MeMa is re-generated from massive real patient photos. By carefully modulating the generation and data-filtering procedures, MeMa avoids breaching real patient privacy, while ensuring rich and plausible medical manifestations. We recruit expert clinicians to annotate MeMa with both coarse- and fine-grained labels, building the first medical-scene DeID benchmark. Additionally, we propose a baseline approach for this new medical-aware DeID task, by integrating data-driven medical semantic priors into the DeID procedure. Despite its conciseness and simplicity, our approach substantially outperforms previous ones. Dataset is available at https://github.com/tianyuan168326/MeMa-Pytorch.




When does a digital image resemble reality? The relevance of this question increases as the generation of synthetic images -- so called deep fakes -- becomes increasingly popular. Deep fakes have gained much attention for a number of reasons -- among others, due to their potential to disrupt the political climate. In order to mitigate these threats, the EU AI Act implements specific transparency regulations for generating synthetic content or manipulating existing content. However, the distinction between real and synthetic images is -- even from a computer vision perspective -- far from trivial. We argue that the current definition of deep fakes in the AI act and the corresponding obligations are not sufficiently specified to tackle the challenges posed by deep fakes. By analyzing the life cycle of a digital photo from the camera sensor to the digital editing features, we find that: (1.) Deep fakes are ill-defined in the EU AI Act. The definition leaves too much scope for what a deep fake is. (2.) It is unclear how editing functions like Google's ``best take'' feature can be considered as an exception to transparency obligations. (3.) The exception for substantially edited images raises questions about what constitutes substantial editing of content and whether or not this editing must be perceptible by a natural person. Our results demonstrate that complying with the current AI Act transparency obligations is difficult for providers and deployers. As a consequence of the unclear provisions, there is a risk that exceptions may be either too broad or too limited. We intend our analysis to foster the discussion on what constitutes a deep fake and to raise awareness about the pitfalls in the current AI Act transparency obligations.