What is Keypoint Detection? Keypoint detection is essential for analyzing and interpreting images in computer vision. It involves simultaneously detecting and localizing interesting points in an image. Keypoints, also known as interest points, are spatial locations or points in the image that define what is interesting or what stands out. They are invariant to image rotation, shrinkage, translation, distortion, etc. Keypoint examples include body joints, facial landmarks, or any other salient points in objects. Keypoints have uses in problems such as pose estimation, object detection and tracking, facial analysis, and augmented reality.
Papers and Code
Oct 12, 2023
Abstract:This work proposes a unified framework called UniPose to detect keypoints of any articulated (e.g., human and animal), rigid, and soft objects via visual or textual prompts for fine-grained vision understanding and manipulation. Keypoint is a structure-aware, pixel-level, and compact representation of any object, especially articulated objects. Existing fine-grained promptable tasks mainly focus on object instance detection and segmentation but often fail to identify fine-grained granularity and structured information of image and instance, such as eyes, leg, paw, etc. Meanwhile, prompt-based keypoint detection is still under-explored. To bridge the gap, we make the first attempt to develop an end-to-end prompt-based keypoint detection framework called UniPose to detect keypoints of any objects. As keypoint detection tasks are unified in this framework, we can leverage 13 keypoint detection datasets with 338 keypoints across 1,237 categories over 400K instances to train a generic keypoint detection model. UniPose can effectively align text-to-keypoint and image-to-keypoint due to the mutual enhancement of textual and visual prompts based on the cross-modality contrastive learning optimization objectives. Our experimental results show that UniPose has strong fine-grained localization and generalization abilities across image styles, categories, and poses. Based on UniPose as a generalist keypoint detector, we hope it could serve fine-grained visual perception, understanding, and generation.
Via

Nov 08, 2023
Abstract:Greenhouse production of fruits and vegetables in developed countries is challenged by labor 12 scarcity and high labor costs. Robots offer a good solution for sustainable and cost-effective 13 production. Acquiring accurate spatial information about relevant plant parts is vital for 14 successful robot operation. Robot perception in greenhouses is challenging due to variations in 15 plant appearance, viewpoints, and illumination. This paper proposes a keypoint-detection-based 16 method using data from an RGB-D camera to estimate the 3D pose of peduncle nodes, which 17 provides essential information to harvest the tomato bunches. 18 19 Specifically, this paper proposes a method that detects four anatomical landmarks in the color 20 image and then integrates 3D point-cloud information to determine the 3D pose. A 21 comprehensive evaluation was conducted in a commercial greenhouse to gain insight into the 22 performance of different parts of the method. The results showed: (1) high accuracy in object 23 detection, achieving an Average Precision (AP) of AP@0.5=0.96; (2) an average Percentage of 24 Detected Joints (PDJ) of the keypoints of PhDJ@0.2=94.31%; and (3) 3D pose estimation 25 accuracy with mean absolute errors (MAE) of 11.38o and 9.93o for the relative upper and lower 26 angles between the peduncle and main stem, respectively. Furthermore, the capability to handle 27 variations in viewpoint was investigated, demonstrating the method was robust to view changes. 28 However, canonical and higher views resulted in slightly higher performance compared to other 29 views. Although tomato was selected as a use case, the proposed method is also applicable to 30 other greenhouse crops like pepper.
* 26 pages, 8 figures, 7 tables. Agricultural Biosystems Engineering
Group, Department of Plant Sciences, 7 Wageningen University and Research,
P.O. Box 16, Wageningen, 6700AA, 8 the Netherlands
Via

Dec 11, 2023
Abstract:This paper proposes the incorporation of techniques from stereophotoclinometry (SPC) into a keypoint-based structure-from-motion (SfM) system to estimate the surface normal and albedo at detected landmarks to improve autonomous surface and shape characterization of small celestial bodies from in-situ imagery. In contrast to the current state-of-the-practice method for small body shape reconstruction, i.e., SPC, which relies on human-in-the-loop verification and high-fidelity a priori information to achieve accurate results, we forego the expensive maplet estimation step and instead leverage dense keypoint measurements and correspondences from an autonomous keypoint detection and matching method based on deep learning to provide the necessary photogrammetric constraints. Moreover, we develop a factor graph-based approach allowing for simultaneous optimization of the spacecraft's pose, landmark positions, Sun-relative direction, and surface normals and albedos via fusion of Sun sensor measurements and image keypoint measurements. The proposed framework is validated on real imagery of the Cornelia crater on Asteroid 4 Vesta, along with pose estimation and mapping comparison against an SPC reconstruction, where we demonstrate precise alignment to the SPC solution without relying on any a priori camera pose and topography information or humans-in-the-loop
Via

Apr 04, 2024
Abstract:Monocular 3D object detection has attracted widespread attention due to its potential to accurately obtain object 3D localization from a single image at a low cost. Depth estimation is an essential but challenging subtask of monocular 3D object detection due to the ill-posedness of 2D to 3D mapping. Many methods explore multiple local depth clues such as object heights and keypoints and then formulate the object depth estimation as an ensemble of multiple depth predictions to mitigate the insufficiency of single-depth information. However, the errors of existing multiple depths tend to have the same sign, which hinders them from neutralizing each other and limits the overall accuracy of combined depth. To alleviate this problem, we propose to increase the complementarity of depths with two novel designs. First, we add a new depth prediction branch named complementary depth that utilizes global and efficient depth clues from the entire image rather than the local clues to reduce the correlation of depth predictions. Second, we propose to fully exploit the geometric relations between multiple depth clues to achieve complementarity in form. Benefiting from these designs, our method achieves higher complementarity. Experiments on the KITTI benchmark demonstrate that our method achieves state-of-the-art performance without introducing extra data. In addition, complementary depth can also be a lightweight and plug-and-play module to boost multiple existing monocular 3d object detectors. Code is available at https://github.com/elvintanhust/MonoCD.
* Accepted to CVPR 2024
Via

Dec 22, 2023
Abstract:Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability, reducing its impact on the environment. Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) and breeding of novel and more resilient crop varieties are helpful to address these challenges. The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor. With this paper, we address the problem of automatic fine-grained organ-level geometric analysis needed for precision phenotyping. As the availability of real-world data in this domain is relatively scarce, we propose a novel dataset that was acquired using UAVs capturing high-resolution images of a real breeding trial containing 48 plant varieties and therefore covering great morphological and appearance diversity. This enables the development of approaches for autonomous phenotyping that generalize well to different varieties. Based on overlapping high-resolution images from multiple viewing angles, we compute photogrammetric dense point clouds and provide detailed and accurate point-wise labels for plants, leaves, and salient points as the tip and the base. Additionally, we include measurements of phenotypic traits performed by experts from the German Federal Plant Variety Office on the real plants, allowing the evaluation of new approaches not only on segmentation and keypoint detection but also directly on the downstream tasks. The provided labeled point clouds enable fine-grained plant analysis and support further progress in the development of automatic phenotyping approaches, but also enable further research in surface reconstruction, point cloud completion, and semantic interpretation of point clouds.
Via

Dec 11, 2023
Abstract:We present \textit{VoxelKP}, a novel fully sparse network architecture tailored for human keypoint estimation in LiDAR data. The key challenge is that objects are distributed sparsely in 3D space, while human keypoint detection requires detailed local information wherever humans are present. We propose four novel ideas in this paper. First, we propose sparse selective kernels to capture multi-scale context. Second, we introduce sparse box-attention to focus on learning spatial correlations between keypoints within each human instance. Third, we incorporate a spatial encoding to leverage absolute 3D coordinates when projecting 3D voxels to a 2D grid encoding a bird's eye view. Finally, we propose hybrid feature learning to combine the processing of per-voxel features with sparse convolution. We evaluate our method on the Waymo dataset and achieve an improvement of $27\%$ on the MPJPE metric compared to the state-of-the-art, \textit{HUM3DIL}, trained on the same data, and $12\%$ against the state-of-the-art, \textit{GC-KPL}, pretrained on a $25\times$ larger dataset. To the best of our knowledge, \textit{VoxelKP} is the first single-staged, fully sparse network that is specifically designed for addressing the challenging task of 3D keypoint estimation from LiDAR data, achieving state-of-the-art performances. Our code is available at \url{https://github.com/shijianjian/VoxelKP}.
Via

Nov 20, 2023
Abstract:Smell gestures play a crucial role in the investigation of past smells in the visual arts yet their automated recognition poses significant challenges. This paper introduces the SniffyArt dataset, consisting of 1941 individuals represented in 441 historical artworks. Each person is annotated with a tightly fitting bounding box, 17 pose keypoints, and a gesture label. By integrating these annotations, the dataset enables the development of hybrid classification approaches for smell gesture recognition. The datasets high-quality human pose estimation keypoints are achieved through the merging of five separate sets of keypoint annotations per person. The paper also presents a baseline analysis, evaluating the performance of representative algorithms for detection, keypoint estimation, and classification tasks, showcasing the potential of combining keypoint estimation with smell gesture classification. The SniffyArt dataset lays a solid foundation for future research and the exploration of multi-task approaches leveraging pose keypoints and person boxes to advance human gesture and olfactory dimension analysis in historical artworks.
* Proceedings of the 5th Workshop on analySis, Understanding and
proMotion of heritAge Contents. 2023. S. 49-58
* 10 pages, 8 figures
Via

Nov 06, 2023
Abstract:Due to the steadily rising amount of valuable goods in supply chains, tampering detection for parcels is becoming increasingly important. In this work, we focus on the use-case last-mile delivery, where only a single RGB image is taken and compared against a reference from an existing database to detect potential appearance changes that indicate tampering. We propose a tampering detection pipeline that utilizes keypoint detection to identify the eight corner points of a parcel. This permits applying a perspective transformation to create normalized fronto-parallel views for each visible parcel side surface. These viewpoint-invariant parcel side surface representations facilitate the identification of signs of tampering on parcels within the supply chain, since they reduce the problem to parcel side surface matching with pair-wise appearance change detection. Experiments with multiple classical and deep learning-based change detection approaches are performed on our newly collected TAMpering detection dataset for PARcels, called TAMPAR. We evaluate keypoint and change detection separately, as well as in a unified system for tampering detection. Our evaluation shows promising results for keypoint (Keypoint AP 75.76) and tampering detection (81% accuracy, F1-Score 0.83) on real images. Furthermore, a sensitivity analysis for tampering types, lens distortion and viewing angles is presented. Code and dataset are available at https://a-nau.github.io/tampar.
* Accepted at WACV 2024
Via

Nov 17, 2023
Abstract:A novel Bayesian framework is proposed, which explicitly relates the homography of one video frame to the next through an affine transformation while explicitly modelling keypoint uncertainty. The literature has previously used differential homography between subsequent frames, but not in a Bayesian setting. In cases where Bayesian methods have been applied, camera motion is not adequately modelled, and keypoints are treated as deterministic. The proposed method, Bayesian Homography Inference from Tracked Keypoints (BHITK), employs a two-stage Kalman filter and significantly improves existing methods. Existing keypoint detection methods may be easily augmented with BHITK. It enables less sophisticated and less computationally expensive methods to outperform the state-of-the-art approaches in most homography evaluation metrics. Furthermore, the homography annotations of the WorldCup and TS-WorldCup datasets have been refined using a custom homography annotation tool released for public use. The refined datasets are consolidated and released as the consolidated and refined WorldCup (CARWC) dataset.
* Submitted to Expert Systems with Applications and currently under
review
Via

Mar 14, 2024
Abstract:In this work, we present PoIFusion, a simple yet effective multi-modal 3D object detection framework to fuse the information of RGB images and LiDAR point clouds at the point of interest (abbreviated as PoI). Technically, our PoIFusion follows the paradigm of query-based object detection, formulating object queries as dynamic 3D boxes. The PoIs are adaptively generated from each query box on the fly, serving as the keypoints to represent a 3D object and play the role of basic units in multi-modal fusion. Specifically, we project PoIs into the view of each modality to sample the corresponding feature and integrate the multi-modal features at each PoI through a dynamic fusion block. Furthermore, the features of PoIs derived from the same query box are aggregated together to update the query feature. Our approach prevents information loss caused by view transformation and eliminates the computation-intensive global attention, making the multi-modal 3D object detector more applicable. We conducted extensive experiments on the nuScenes dataset to evaluate our approach. Remarkably, our PoIFusion achieves 74.9\% NDS and 73.4\% mAP, setting a state-of-the-art record on the multi-modal 3D object detection benchmark. Codes will be made available via \url{https://djiajunustc.github.io/projects/poifusion}.
* NIL
Via
