The Directed Acyclic Graph (DAG) task model for real-time scheduling finds its primary practical target in Robot Operating System 2 (ROS 2). However, ROS 2's publish/subscribe API leaves DAG precedence constraints unenforced: a callback may publish mid-execution, and multi-input callbacks let developers choose topic-matching policies. Thus preserving DAG semantics relies on conventions; once violated, the model collapses. We propose the Function-as-Subtask (FasS) API, which expresses each subtask as a function whose arguments/return values are the subtask's incoming/outgoing edges. By minimizing description freedom, DAG semantics is guaranteed at the API rather than by programmer discipline. We implement a DAG-native scheduler using FasS on a Rust-based experimental kernel and evaluate its semantic fidelity, and we outline design guidelines for applying FasS to Linux Linux sched_ext.
Hard negatives are essential for training effective retrieval models. Hard-negative mining typically relies on ranking documents using cross-encoders or static embedding models based on similarity metrics such as cosine distance. Hard negative mining becomes challenging for biomedical and scientific domains due to the difficulty in distinguishing between source and hard negative documents. However, referenced documents naturally share contextual relevance with the source document but are not duplicates, making them well-suited as hard negatives. In this work, we propose BiCA: Biomedical Dense Retrieval with Citation-Aware Hard Negatives, an approach for hard-negative mining by utilizing citation links in 20,000 PubMed articles for improving a domain-specific small dense retriever. We fine-tune the GTE_small and GTE_Base models using these citation-informed negatives and observe consistent improvements in zero-shot dense retrieval using nDCG@10 for both in-domain and out-of-domain tasks on BEIR and outperform baselines on long-tailed topics in LoTTE using Success@5. Our findings highlight the potential of leveraging document link structure to generate highly informative negatives, enabling state-of-the-art performance with minimal fine-tuning and demonstrating a path towards highly data-efficient domain adaptation.
The diffusion of ideas and language in society has conventionally been described by S-shaped models, such as the logistic curve. However, the role of sub-exponential growth -- a slower-than-exponential pattern known in epidemiology -- has been largely overlooked in broader social phenomena. Here, we present a piecewise power-law model to characterize complex growth curves with a few parameters. We systematically analyzed a large-scale dataset of approximately one billion Japanese blog articles linked to Wikipedia vocabulary, and observed consistent patterns in web search trend data (English, Spanish, and Japanese). Our analysis of 2,963 items, selected for reliable estimation (e.g., sufficient duration/peak, monotonic growth), reveals that 1,625 (55%) diffusion patterns without abrupt level shifts were adequately described by one or two segments. For single-segment curves, we found that (i) the mode of the shape parameter $α$ was near 0.5, indicating prevalent sub-exponential growth; (ii) the peak diffusion scale is primarily determined by the growth rate $R$, with minor contributions from $α$ or the duration $T$; and (iii) $α$ showed a tendency to vary with the nature of the topic, being smaller for niche/local topics and larger for widely shared ones. Furthermore, a micro-behavioral model of outward (stranger) vs. inward (community) contact suggests that $α$ can be interpreted as an index of the preference for outward-oriented communication. These findings suggest that sub-exponential growth is a common pattern of social diffusion, and our model provides a practical framework for consistently describing, comparing, and interpreting complex and diverse growth curves.

In democracies like India, people are free to express their views and demands. Sometimes this causes situations of civil unrest such as protests, rallies, and marches. These events may be disruptive in nature and are often held without prior permission from the competent authority. Forecasting these events helps administrative officials take necessary action. Usually, protests are announced well in advance to encourage large participation. Therefore, by analyzing such announcements in news articles, planned events can be forecasted beforehand. We developed such a system in this paper to forecast social unrest events using topic modeling and word2vec to filter relevant news articles, and Named Entity Recognition (NER) methods to identify entities such as people, organizations, locations, and dates. Time normalization is applied to convert future date mentions into a standard format. In this paper, we have developed a geographically independent, generalized model to identify key features for filtering civil unrest events. There could be many mentions of entities, but only a few may actually be involved in the event. This paper calls such entities Related Entities and proposes a method to extract them, referred to as Related Entity Extraction.
Transmitter localization in Molecular Communication via Diffusion is a critical topic with many applications. However, accurate localization of multiple transmitters is a challenging problem due to the stochastic nature of diffusion and overlapping molecule distributions at the receiver surface. To address these issues, we introduce clustering-based centroid correction methods that enhance robustness against density variations, and outliers. In addition, we propose two clusteringguided Residual Neural Networks, namely AngleNN for direction refinement and SizeNN for cluster size estimation. Experimental results show that both approaches provide significant improvements with reducing localization error between 69% (2-Tx) and 43% (4-Tx) compared to the K-means.
This book is an introductory textbook targeted towards computer science students who are completely new to the topic of automated negotiation. It does not require any prerequisite knowledge, except for elementary mathematics and basic programming skills. This book comes with an simple toy-world negotiation framework implemented in Python that can be used by the readers to implement their own negotiation algorithms and perform experiments with them. This framework is small and simple enough that any reader who does not like to work in Python should be able to re-implement it very quickly in any other programming language of their choice.
Until recently, fine-tuned BERT-like models provided state-of-the-art performance on text classification tasks. With the rise of instruction-tuned decoder-only models, commonly known as large language models (LLMs), the field has increasingly moved toward zero-shot and few-shot prompting. However, the performance of LLMs on text classification, particularly on less-resourced languages, remains under-explored. In this paper, we evaluate the performance of current language models on text classification tasks across several South Slavic languages. We compare openly available fine-tuned BERT-like models with a selection of open-source and closed-source LLMs across three tasks in three domains: sentiment classification in parliamentary speeches, topic classification in news articles and parliamentary speeches, and genre identification in web texts. Our results show that LLMs demonstrate strong zero-shot performance, often matching or surpassing fine-tuned BERT-like models. Moreover, when used in a zero-shot setup, LLMs perform comparably in South Slavic languages and English. However, we also point out key drawbacks of LLMs, including less predictable outputs, significantly slower inference, and higher computational costs. Due to these limitations, fine-tuned BERT-like models remain a more practical choice for large-scale automatic text annotation.




This paper proposes a topic modeling method that scales linearly to billions of documents. We make three core contributions: i) we present a topic modeling method, Tensor Latent Dirichlet Allocation (TLDA), that has identifiable and recoverable parameter guarantees and sample complexity guarantees for large data; ii) we show that this method is computationally and memory efficient (achieving speeds over 3-4x those of prior parallelized Latent Dirichlet Allocation (LDA) methods), and that it scales linearly to text datasets with over a billion documents; iii) we provide an open-source, GPU-based implementation, of this method. This scaling enables previously prohibitive analyses, and we perform two real-world, large-scale new studies of interest to political scientists: we provide the first thorough analysis of the evolution of the #MeToo movement through the lens of over two years of Twitter conversation and a detailed study of social media conversations about election fraud in the 2020 presidential election. Thus this method provides social scientists with the ability to study very large corpora at scale and to answer important theoretically-relevant questions about salient issues in near real-time.




Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for nonnegative data, with applications such as hyperspectral unmixing and topic modeling. NMF is a difficult problem in general (NP-hard), and its solutions are typically not unique. To address these two issues, additional constraints or assumptions are often used. In particular, separability assumes that the basis vectors in the NMF are equal to some columns of the input matrix. In that case, the problem is referred to as separable NMF (SNMF) and can be solved in polynomial-time with robustness guarantees, while identifying a unique solution. However, in real-world scenarios, due to noise or variability, multiple data points may lie near the basis vectors, which SNMF does not leverage. In this work, we rely on the smooth separability assumption, which assumes that each basis vector is close to multiple data points. We explore the properties of the corresponding problem, referred to as smooth SNMF (SSNMF), and examine how it relates to SNMF and orthogonal NMF. We then propose a convex model for SSNMF and show that it provably recovers the sought-after factors, even in the presence of noise. We finally adapt an existing fast gradient method to solve this convex model for SSNMF, and show that it compares favorably with state-of-the-art methods on both synthetic and hyperspectral datasets.
We introduce MemoriesDB, a unified data architecture designed to avoid decoherence across time, meaning, and relation in long-term computational memory. Each memory is a time-semantic-relational entity-a structure that simultaneously encodes when an event occurred, what it means, and how it connects to other events. Built initially atop PostgreSQL with pgvector extensions, MemoriesDB combines the properties of a time-series datastore, a vector database, and a graph system within a single append-only schema. Each memory is represented as a vertex uniquely labeled by its microsecond timestamp and accompanied by low- and high-dimensional normalized embeddings that capture semantic context. Directed edges between memories form labeled relations with per-edge metadata, enabling multiple contextual links between the same vertices. Together these constructs form a time-indexed stack of temporal-semantic surfaces, where edges project as directional arrows in a 1+1-dimensional similarity field, tracing the evolution of meaning through time while maintaining cross-temporal coherence. This formulation supports efficient time-bounded retrieval, hybrid semantic search, and lightweight structural reasoning in a single query path. A working prototype demonstrates scalable recall and contextual reinforcement using standard relational infrastructure, and we discuss extensions toward a columnar backend, distributed clustering, and emergent topic modeling.