Abstract:Climate discourse online plays a crucial role in shaping public understanding of climate change and influencing political and policy outcomes. However, climate communication unfolds across structurally distinct platforms with fundamentally different incentive structures: paid advertising ecosystems incentivize targeted, strategic persuasion, while public social media platforms host largely organic, user-driven discourse. Existing computational studies typically analyze these environments in isolation, limiting our ability to distinguish institutional messaging from public expression. In this work, we present a comparative analysis of climate discourse across paid advertisements on Meta (previously known as Facebook) and public posts on Bluesky from July 2024 to September 2025. We introduce an interpretable, end-to-end thematic discovery and assignment framework that clusters texts by semantic similarity and leverages large language models (LLMs) to generate concise, human-interpretable theme labels. We evaluate the quality of the induced themes against traditional topic modeling baselines using both human judgments and an LLM-based evaluator, and further validate their semantic coherence through downstream stance prediction and theme-guided retrieval tasks. Applying the resulting themes, we characterize systematic differences between paid climate messaging and public climate discourse and examine how thematic prevalence shifts around major political events. Our findings show that platform-level incentives are reflected in the thematic structure, stance alignment, and temporal responsiveness of climate narratives. While our empirical analysis focuses on climate communication, the proposed framework is designed to support comparative narrative analysis across heterogeneous communication environments.
Abstract:Robot musicians require precise control to obtain proper note accuracy, sound quality, and musical expression. Performance of string instruments, such as violin and cello, presents a significant challenge due to the precise control required over bow angle and pressure to produce the desired sound. While prior robotic cellists focus on accurate bowing trajectories, these works often rely on expensive motion capture techniques, and fail to sightread music in a human-like way. We propose a novel end-to-end MIDI score to robotic motion pipeline which converts musical input directly into collision-aware bowing motions for a UR5e robot cellist. Through use of Universal Robot Freedrive feature, our robotic musician can achieve human-like sound without the need for motion capture. Additionally, this work records live joint data via Real-Time Data Exchange (RTDE) as the robot plays, providing labeled robotic playing data from a collection of five standard pieces to the research community. To demonstrate the effectiveness of our method in comparison to human performers, we introduce the Musical Turing Test, in which a collection of 132 human participants evaluate our robot's performance against a human baseline. Human reference recordings are also released, enabling direct comparison for future studies. This evaluation technique establishes the first benchmark for robotic cello performance. Finally, we outline a residual reinforcement learning methodology to improve upon baseline robotic controls, highlighting future opportunities for improved string-crossing efficiency and sound quality.