Abstract:Cross-lingual topic modeling seeks to uncover coherent and semantically aligned topics across languages - a task central to multilingual understanding. Yet most existing models learn topics in disjoint, language-specific spaces and rely on alignment mechanisms (e.g., bilingual dictionaries) that often fail to capture deep cross-lingual semantics, resulting in loosely connected topic spaces. Moreover, these approaches often overlook the rich semantic signals embedded in multilingual pretrained representations, further limiting their ability to capture fine-grained alignment. We introduce GloCTM (Global Context Space for Cross-Lingual Topic Model), a novel framework that enforces cross-lingual topic alignment through a unified semantic space spanning the entire model pipeline. GloCTM constructs enriched input representations by expanding bag-of-words with cross-lingual lexical neighborhoods, and infers topic proportions using both local and global encoders, with their latent representations aligned through internal regularization. At the output level, the global topic-word distribution, defined over the combined vocabulary, structurally synchronizes topic meanings across languages. To further ground topics in deep semantic space, GloCTM incorporates a Centered Kernel Alignment (CKA) loss that aligns the latent topic space with multilingual contextual embeddings. Experiments across multiple benchmarks demonstrate that GloCTM significantly improves topic coherence and cross-lingual alignment, outperforming strong baselines.
Abstract:Exploiting the power of pre-trained models, prompt-based approaches stand out compared to other continual learning solutions in effectively preventing catastrophic forgetting, even with very few learnable parameters and without the need for a memory buffer. While existing prompt-based continual learning methods excel in leveraging prompts for state-of-the-art performance, they often lack a theoretical explanation for the effectiveness of prompting. This paper conducts a theoretical analysis to unravel how prompts bestow such advantages in continual learning, thus offering a new perspective on prompt design. We first show that the attention block of pre-trained models like Vision Transformers inherently encodes a special mixture of experts architecture, characterized by linear experts and quadratic gating score functions. This realization drives us to provide a novel view on prefix tuning, reframing it as the addition of new task-specific experts, thereby inspiring the design of a novel gating mechanism termed Non-linear Residual Gates (NoRGa). Through the incorporation of non-linear activation and residual connection, NoRGa enhances continual learning performance while preserving parameter efficiency. The effectiveness of NoRGa is substantiated both theoretically and empirically across diverse benchmarks and pretraining paradigms.