Richard
Abstract:The growing Machine Learning (ML) services require extensive collections of user data, which may inadvertently include people's private information irrelevant to the services. Various studies have been proposed to protect private attributes by removing them from the data while maintaining the utilities of the data for downstream tasks. Nevertheless, as we theoretically and empirically show in the paper, these methods reveal severe vulnerability because of a common weakness rooted in their adversarial training based strategies. To overcome this limitation, we propose a novel approach, PASS, designed to stochastically substitute the original sample with another one according to certain probabilities, which is trained with a novel loss function soundly derived from information-theoretic objective defined for utility-preserving private attributes protection. The comprehensive evaluation of PASS on various datasets of different modalities, including facial images, human activity sensory signals, and voice recording datasets, substantiates PASS's effectiveness and generalizability.
Abstract:Large language model (LLM) watermarks enable authentication of text provenance, curb misuse of machine-generated text, and promote trust in AI systems. Current watermarks operate by changing the next-token predictions output by an LLM. The updated (i.e., watermarked) predictions depend on random side information produced, for example, by hashing previously generated tokens. LLM watermarking is particularly challenging in low-entropy generation tasks - such as coding - where next-token predictions are near-deterministic. In this paper, we propose an optimization framework for watermark design. Our goal is to understand how to most effectively use random side information in order to maximize the likelihood of watermark detection and minimize the distortion of generated text. Our analysis informs the design of two new watermarks: HeavyWater and SimplexWater. Both watermarks are tunable, gracefully trading-off between detection accuracy and text distortion. They can also be applied to any LLM and are agnostic to side information generation. We examine the performance of HeavyWater and SimplexWater through several benchmarks, demonstrating that they can achieve high watermark detection accuracy with minimal compromise of text generation quality, particularly in the low-entropy regime. Our theoretical analysis also reveals surprising new connections between LLM watermarking and coding theory. The code implementation can be found in https://github.com/DorTsur/HeavyWater_SimplexWater
Abstract:Large-language models (LLMs) are now able to produce text that is, in many cases, seemingly indistinguishable from human-generated content. This has fueled the development of watermarks that imprint a ``signal'' in LLM-generated text with minimal perturbation of an LLM's output. This paper provides an analysis of text watermarking in a one-shot setting. Through the lens of hypothesis testing with side information, we formulate and analyze the fundamental trade-off between watermark detection power and distortion in generated textual quality. We argue that a key component in watermark design is generating a coupling between the side information shared with the watermark detector and a random partition of the LLM vocabulary. Our analysis identifies the optimal coupling and randomization strategy under the worst-case LLM next-token distribution that satisfies a min-entropy constraint. We provide a closed-form expression of the resulting detection rate under the proposed scheme and quantify the cost in a max-min sense. Finally, we provide an array of numerical results, comparing the proposed scheme with the theoretical optimum and existing schemes, in both synthetic data and LLM watermarking. Our code is available at https://github.com/Carol-Long/CC_Watermark
Abstract:Mixed Reality (MR) could assist users' tasks by continuously integrating virtual content with their view of the physical environment. However, where and how to place these content to best support the users has been a challenging problem due to the dynamic nature of MR experiences. In contrast to prior work that investigates optimization-based methods, we are exploring how reinforcement learning (RL) could assist with continuous 3D content placement that is aware of users' poses and their surrounding environments. Through an initial exploration and preliminary evaluation, our results demonstrate the potential of RL to position content that maximizes the reward for users on the go. We further identify future directions for research that could harness the power of RL for personalized and optimized UI and content placement in MR.
Abstract:LLM hallucination, where LLMs occasionally generate unfaithful text, poses significant challenges for their practical applications. Most existing detection methods rely on external knowledge, LLM fine-tuning, or hallucination-labeled datasets, and they do not distinguish between different types of hallucinations, which are crucial for improving detection performance. We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated. Our novel zero-shot method assesses whether LLM has enough knowledge about a given prompt and text. Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning and underscore its importance for enhancing detection performance.
Abstract:Recent works have shown that by using large pre-trained models along with learnable prompts, rehearsal-free methods for class-incremental learning (CIL) settings can achieve superior performance to prominent rehearsal-based ones. Rehearsal-free CIL methods struggle with distinguishing classes from different tasks, as those are not trained together. In this work we propose a regularization method based on virtual outliers to tighten decision boundaries of the classifier, such that confusion of classes among different tasks is mitigated. Recent prompt-based methods often require a pool of task-specific prompts, in order to prevent overwriting knowledge of previous tasks with that of the new task, leading to extra computation in querying and composing an appropriate prompt from the pool. This additional cost can be eliminated, without sacrificing accuracy, as we reveal in the paper. We illustrate that a simplified prompt-based method can achieve results comparable to previous state-of-the-art (SOTA) methods equipped with a prompt pool, using much less learnable parameters and lower inference cost. Our regularization method has demonstrated its compatibility with different prompt-based methods, boosting those previous SOTA rehearsal-free CIL methods' accuracy on the ImageNet-R and CIFAR-100 benchmarks. Our source code is available at https://github.com/jpmorganchase/ovor.
Abstract:Machine unlearning has emerged as a new paradigm to deliberately forget data samples from a given model in order to adhere to stringent regulations. However, existing machine unlearning methods have been primarily focused on classification models, leaving the landscape of unlearning for generative models relatively unexplored. This paper serves as a bridge, addressing the gap by providing a unifying framework of machine unlearning for image-to-image generative models. Within this framework, we propose a computationally-efficient algorithm, underpinned by rigorous theoretical analysis, that demonstrates negligible performance degradation on the retain samples, while effectively removing the information from the forget samples. Empirical studies on two large-scale datasets, ImageNet-1K and Places-365, further show that our algorithm does not rely on the availability of the retain samples, which further complies with data retention policy. To our best knowledge, this work is the first that represents systemic, theoretical, empirical explorations of machine unlearning specifically tailored for image-to-image generative models. Our code is available at https://github.com/jpmorganchase/l2l-generator-unlearning.
Abstract:Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to $20\times \sim 5000\times$. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.
Abstract:The rapid growth of machine learning has spurred legislative initiatives such as ``the Right to be Forgotten,'' allowing users to request data removal. In response, ``machine unlearning'' proposes the selective removal of unwanted data without the need for retraining from scratch. While the Neural-Tangent-Kernel-based (NTK-based) unlearning method excels in performance, it suffers from significant computational complexity, especially for large-scale models and datasets. Our work introduces ``Fast-NTK,'' a novel NTK-based unlearning algorithm that significantly reduces the computational complexity by incorporating parameter-efficient fine-tuning methods, such as fine-tuning batch normalization layers in a CNN or visual prompts in a vision transformer. Our experimental results demonstrate scalability to much larger neural networks and datasets (e.g., 88M parameters; 5k images), surpassing the limitations of previous full-model NTK-based approaches designed for smaller cases (e.g., 8M parameters; 500 images). Notably, our approach maintains a performance comparable to the traditional method of retraining on the retain set alone. Fast-NTK can thus enable for practical and scalable NTK-based unlearning in deep neural networks.
Abstract:Machine learning tasks may admit multiple competing models that achieve similar performance yet produce conflicting outputs for individual samples -- a phenomenon known as predictive multiplicity. We demonstrate that fairness interventions in machine learning optimized solely for group fairness and accuracy can exacerbate predictive multiplicity. Consequently, state-of-the-art fairness interventions can mask high predictive multiplicity behind favorable group fairness and accuracy metrics. We argue that a third axis of ``arbitrariness'' should be considered when deploying models to aid decision-making in applications of individual-level impact. To address this challenge, we propose an ensemble algorithm applicable to any fairness intervention that provably ensures more consistent predictions.