Richard
Abstract:Fairness and privacy are two vital pillars of trustworthy machine learning. Despite extensive research on these individual topics, the relationship between fairness and privacy has received significantly less attention. In this paper, we utilize the information-theoretic measure Chernoff Information to highlight the data-dependent nature of the relationship among the triad of fairness, privacy, and accuracy. We first define Noisy Chernoff Difference, a tool that allows us to analyze the relationship among the triad simultaneously. We then show that for synthetic data, this value behaves in 3 distinct ways (depending on the distribution of the data). We highlight the data distributions involved in these cases and explore their fairness and privacy implications. Additionally, we show that Noisy Chernoff Difference acts as a proxy for the steepness of the fairness-accuracy curves. Finally, we propose a method for estimating Chernoff Information on data from unknown distributions and utilize this framework to examine the triad dynamic on real datasets. This work builds towards a unified understanding of the fairness-privacy-accuracy relationship and highlights its data-dependent nature.
Abstract:Neural compression methods are gaining popularity due to their superior rate-distortion performance over traditional methods, even at extremely low bitrates below 0.1 bpp. As deep learning architectures, these models are prone to bias during the training process, potentially leading to unfair outcomes for individuals in different groups. In this paper, we present a general, structured, scalable framework for evaluating bias in neural image compression models. Using this framework, we investigate racial bias in neural compression algorithms by analyzing nine popular models and their variants. Through this investigation, we first demonstrate that traditional distortion metrics are ineffective in capturing bias in neural compression models. Next, we highlight that racial bias is present in all neural compression models and can be captured by examining facial phenotype degradation in image reconstructions. We then examine the relationship between bias and realism in the decoded images and demonstrate a trade-off across models. Finally, we show that utilizing a racially balanced training set can reduce bias but is not a sufficient bias mitigation strategy. We additionally show the bias can be attributed to compression model bias and classification model bias. We believe that this work is a first step towards evaluating and eliminating bias in neural image compression models.