Abstract:Deep Research Agents are increasingly used for automated survey generation. However, whether they can write surveys like human experts remains unclear. Existing benchmarks focus on fluency or citation accuracy, but none evaluates the core capabilities: retrieving essential papers and organizing them into coherent knowledge structures. We introduce TaxoBench, a diagnostic benchmark derived from 72 highly-cited computer science surveys. We manually extract expert-authored taxonomy trees containing 3,815 precisely categorized citations as ground truth. Our benchmark supports two evaluation modes: Deep Research mode tests end-to-end retrieval and organization given only a topic, while Bottom-Up mode isolates structuring capability by providing the exact papers human experts used. We evaluate 7 leading Deep Research agents and 12 frontier LLMs. Results reveal a dual bottleneck: the best agent recalls only 20.9% of expert-selected papers, and even with perfect input, the best model achieves only 0.31 ARI in organization. Current deep research agents remain far from expert-level survey writing. Our benchmark is publicly available at https://github.com/KongLongGeFDU/TaxoBench.
Abstract:Evaluating novelty is critical yet challenging in peer review, as reviewers must assess submissions against a vast, rapidly evolving literature. This report presents OpenNovelty, an LLM-powered agentic system for transparent, evidence-based novelty analysis. The system operates through four phases: (1) extracting the core task and contribution claims to generate retrieval queries; (2) retrieving relevant prior work based on extracted queries via semantic search engine; (3) constructing a hierarchical taxonomy of core-task-related work and performing contribution-level full-text comparisons against each contribution; and (4) synthesizing all analyses into a structured novelty report with explicit citations and evidence snippets. Unlike naive LLM-based approaches, \textsc{OpenNovelty} grounds all assessments in retrieved real papers, ensuring verifiable judgments. We deploy our system on 500+ ICLR 2026 submissions with all reports publicly available on our website, and preliminary analysis suggests it can identify relevant prior work, including closely related papers that authors may overlook. OpenNovelty aims to empower the research community with a scalable tool that promotes fair, consistent, and evidence-backed peer review.
Abstract:Reward models (RMs) play a pivotal role in aligning large language models (LLMs) with human values. However, noisy preferences in human feedback can lead to reward misgeneralization - a phenomenon where reward models learn spurious correlations or overfit to noisy preferences, which poses important challenges to the generalization of RMs. This paper systematically analyzes the characteristics of preference pairs and aims to identify how noisy preferences differ from human-aligned preferences in reward modeling. Our analysis reveals that noisy preferences are difficult for RMs to fit, as they cause sharp training fluctuations and irregular gradient updates. These distinctive dynamics suggest the feasibility of identifying and excluding such noisy preferences. Empirical studies demonstrate that policy LLM optimized with a reward model trained on the full preference dataset, which includes substantial noise, performs worse than the one trained on a subset of exclusively high quality preferences. To address this challenge, we propose an online Collaborative Reward Modeling (CRM) framework to achieve robust preference learning through peer review and curriculum learning. In particular, CRM maintains two RMs that collaboratively filter potential noisy preferences by peer-reviewing each other's data selections. Curriculum learning synchronizes the capabilities of two models, mitigating excessive disparities to promote the utility of peer review. Extensive experiments demonstrate that CRM significantly enhances RM generalization, with up to 9.94 points improvement on RewardBench under an extreme 40\% noise. Moreover, CRM can seamlessly extend to implicit-reward alignment methods, offering a robust and versatile alignment strategy.