Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
We present our journey in training a speech language model for Wolof, an underrepresented language spoken in West Africa, and share key insights. We first emphasize the importance of collecting large-scale, spontaneous, high-quality speech data, and show that continued pretraining HuBERT on this dataset outperforms both the base model and African-centric models on ASR. We then integrate this speech encoder into a Wolof LLM to train the first Speech LLM for this language, extending its capabilities to tasks such as speech translation. Furthermore, we explore training the Speech LLM to perform multi-step Chain-of-Thought before transcribing or translating. Our results show that the Speech LLM not only improves speech recognition but also performs well in speech translation. The models and the code will be openly shared.
Modern end-to-end automatic speech recognition (ASR) models like Whisper not only suffer from reduced recognition accuracy in noise, but also exhibit overconfidence - assigning high confidence to wrong predictions. We conduct a systematic analysis of Whisper's behavior in additive noise conditions and find that overconfident errors increase dramatically at low signal-to-noise ratios, with 10-20% of tokens incorrectly predicted with confidence above 0.7. To mitigate this, we propose a lightweight, post-hoc calibration framework that detects potential overconfidence and applies temperature scaling selectively to those tokens, without altering the underlying ASR model. Evaluations on the R-SPIN dataset demonstrate that, in the low signal-to-noise ratio range (-18 to -5 dB), our method reduces the expected calibration error (ECE) by 58% and triples the normalized cross entropy (NCE), yielding more reliable confidence estimates under severe noise conditions.
Automatic Speech Recognition (ASR) systems remain prone to errors that affect downstream applications. In this paper, we propose LIR-ASR, a heuristic optimized iterative correction framework using LLMs, inspired by human auditory perception. LIR-ASR applies a "Listening-Imagining-Refining" strategy, generating phonetic variants and refining them in context. A heuristic optimization with finite state machine (FSM) is introduced to prevent the correction process from being trapped in local optima and rule-based constraints help maintain semantic fidelity. Experiments on both English and Chinese ASR outputs show that LIR-ASR achieves average reductions in CER/WER of up to 1.5 percentage points compared to baselines, demonstrating substantial accuracy gains in transcription.




In recent years, automatic speech recognition (ASR) has witnessed transformative advancements driven by three complementary paradigms: data scaling, model size scaling, and deep integration with large language models (LLMs). However, LLMs are prone to hallucination, which can significantly degrade user experience in real-world ASR applications. In this paper, we present FunAudio-ASR, a large-scale, LLM-based ASR system that synergistically combines massive data, large model capacity, LLM integration, and reinforcement learning to achieve state-of-the-art performance across diverse and complex speech recognition scenarios. Moreover, FunAudio-ASR is specifically optimized for practical deployment, with enhancements in streaming capability, noise robustness, code-switching, hotword customization, and satisfying other real-world application requirements. Experimental results show that while most LLM-based ASR systems achieve strong performance on open-source benchmarks, they often underperform on real industry evaluation sets. Thanks to production-oriented optimizations, FunAudio-ASR achieves SOTA performance on real application datasets, demonstrating its effectiveness and robustness in practical settings.
We present a multimodal fusion framework that bridges pre-trained decoder-based large language models (LLM) and acoustic encoder-decoder architectures such as Whisper, with the aim of building speech-enabled LLMs. Instead of directly using audio embeddings, we explore an intermediate audio-conditioned text space as a more effective mechanism for alignment. Our method operates fully in continuous text representation spaces, fusing Whisper's hidden decoder states with those of an LLM through cross-modal attention, and supports both offline and streaming modes. We introduce \textit{VoxKrikri}, the first Greek speech LLM, and show through analysis that our approach effectively aligns representations across modalities. These results highlight continuous space fusion as a promising path for multilingual and low-resource speech LLMs, while achieving state-of-the-art results for Automatic Speech Recognition in Greek, providing an average $\sim20\%$ relative improvement across benchmarks.
This paper introduces three self-contained data augmentation methods for low-resource Automatic Speech Recognition (ASR). Our techniques first generate novel text--using gloss-based replacement, random replacement, or an LLM-based approach--and then apply Text-to-Speech (TTS) to produce synthetic audio. We apply these methods, which leverage only the original annotated data, to four languages with extremely limited resources (Vatlongos, Nashta, Shinekhen Buryat, and Kakabe). Fine-tuning a pretrained Wav2Vec2-XLSR-53 model on a combination of the original audio and generated synthetic data yields significant performance gains, including a 14.3% absolute WER reduction for Nashta. The methods prove effective across all four low-resource languages and also show utility for high-resource languages like English, demonstrating their broad applicability.
Low latency speech human-machine communication is becoming increasingly necessary as speech technology advances quickly in the last decade. One of the primary factors behind the advancement of speech technology is self-supervised learning. Most self-supervised learning algorithms are designed with full utterance assumption and compromises have to made if partial utterances are presented, which are common in the streaming applications. In this work, we propose a chunk based self-supervised learning (Chunk SSL) algorithm as an unified solution for both streaming and offline speech pre-training. Chunk SSL is optimized with the masked prediction loss and an acoustic encoder is encouraged to restore indices of those masked speech frames with help from unmasked frames in the same chunk and preceding chunks. A copy and append data augmentation approach is proposed to conduct efficient chunk based pre-training. Chunk SSL utilizes a finite scalar quantization (FSQ) module to discretize input speech features and our study shows a high resolution FSQ codebook, i.e., a codebook with vocabulary size up to a few millions, is beneficial to transfer knowledge from the pre-training task to the downstream tasks. A group masked prediction loss is employed during pre-training to alleviate the high memory and computation cost introduced by the large codebook. The proposed approach is examined in two speech to text tasks, i.e., speech recognition and speech translation. Experimental results on the \textsc{Librispeech} and \textsc{Must-C} datasets show that the proposed method could achieve very competitive results for speech to text tasks at both streaming and offline modes.
Adversarial perturbations in speech pose a serious threat to automatic speech recognition (ASR) and speaker verification by introducing subtle waveform modifications that remain imperceptible to humans but can significantly alter system outputs. While targeted attacks on end-to-end ASR models have been widely studied, the phonetic basis of these perturbations and their effect on speaker identity remain underexplored. In this work, we analyze adversarial audio at the phonetic level and show that perturbations exploit systematic confusions such as vowel centralization and consonant substitutions. These distortions not only mislead transcription but also degrade phonetic cues critical for speaker verification, leading to identity drift. Using DeepSpeech as our ASR target, we generate targeted adversarial examples and evaluate their impact on speaker embeddings across genuine and impostor samples. Results across 16 phonetically diverse target phrases demonstrate that adversarial audio induces both transcription errors and identity drift, highlighting the need for phonetic-aware defenses to ensure the robustness of ASR and speaker recognition systems.




This paper proposes a personalization method for speech emotion recognition (SER) through in-context learning (ICL). Since the expression of emotions varies from person to person, speaker-specific adaptation is crucial for improving the SER performance. Conventional SER methods have been personalized using emotional utterances of a target speaker, but it is often difficult to prepare utterances corresponding to all emotion labels in advance. Our idea to overcome this difficulty is to obtain speaker characteristics by conditioning a few emotional utterances of the target speaker in ICL-based inference. ICL is a method to perform unseen tasks by conditioning a few input-output examples through inference in large language models (LLMs). We meta-train a speech-language model extended from the LLM to learn how to perform personalized SER via ICL. Experimental results using our newly collected SER dataset demonstrate that the proposed method outperforms conventional methods.
Speaker diarization (SD) struggles in real-world scenarios due to dynamic environments and unknown speaker counts. SD is rarely used alone and is often paired with automatic speech recognition (ASR), but non-modular methods that jointly train on domain-specific data have limited flexibility. Moreover, many applications require true speaker identities rather than SD's pseudo labels. We propose a training-free modular pipeline combining off-the-shelf SD, ASR, and a large language model (LLM) to determine who spoke, what was said, and who they are. Using structured LLM prompting on reconciled SD and ASR outputs, our method leverages semantic continuity in conversational context to refine low-confidence speaker labels and assigns role identities while correcting split speakers. On a real-world patient-clinician dataset, our approach achieves a 29.7% relative error reduction over baseline reconciled SD and ASR. It enhances diarization performance without additional training and delivers a complete pipeline for SD, ASR, and speaker identity detection in practical applications.