Abstract:Robust audio-visual speech recognition (AVSR) in noisy environments remains challenging, as existing systems struggle to estimate audio reliability and dynamically adjust modality reliance. We propose router-gated cross-modal feature fusion, a novel AVSR framework that adaptively reweights audio and visual features based on token-level acoustic corruption scores. Using an audio-visual feature fusion-based router, our method down-weights unreliable audio tokens and reinforces visual cues through gated cross-attention in each decoder layer. This enables the model to pivot toward the visual modality when audio quality deteriorates. Experiments on LRS3 demonstrate that our approach achieves an 16.51-42.67% relative reduction in word error rate compared to AV-HuBERT. Ablation studies confirm that both the router and gating mechanism contribute to improved robustness under real-world acoustic noise.
Abstract:We introduce FLOWER, a novel conditioning method designed for speech restoration that integrates Gaussian guidance into generative frameworks. By transforming clean speech into a predefined prior distribution (e.g., Gaussian distribution) using a normalizing flow network, FLOWER extracts critical information to guide generative models. This guidance is incorporated into each block of the generative network, enabling precise restoration control. Experimental results demonstrate the effectiveness of FLOWER in improving performance across various general speech restoration tasks.
Abstract:In this paper, we introduce a novel general speech restoration model: the Dual-path Magnitude (DM) network, designed to address multiple distortions including noise, reverberation, and bandwidth degradation effectively. The DM network employs dual parallel magnitude decoders that share parameters: one uses a masking-based algorithm for distortion removal and the other employs a mapping-based approach for speech restoration. A novel aspect of the DM network is the integration of the magnitude spectrogram output from the masking decoder into the mapping decoder through a skip connection, enhancing the overall restoration capability. This integrated approach overcomes the inherent limitations observed in previous models, as detailed in a step-by-step analysis. The experimental results demonstrate that the DM network outperforms other baseline models in the comprehensive aspect of general speech restoration, achieving substantial restoration with fewer parameters.