



Large Language Models (LLMs) have become effective zero-shot classifiers, but their high computational requirements and environmental costs limit their practicality for large-scale annotation in high-performance computing (HPC) environments. To support more sustainable workflows, we present Text2Graph, an open-source Python package that provides a modular implementation of existing text-to-graph classification approaches. The framework enables users to combine LLM-based partial annotation with Graph Neural Network (GNN) label propagation in a flexible manner, making it straightforward to swap components such as feature extractors, edge construction methods, and sampling strategies. We benchmark Text2Graph on a zero-shot setting using five datasets spanning topic classification and sentiment analysis tasks, comparing multiple variants against other zero-shot approaches for text classification. In addition to reporting performance, we provide detailed estimates of energy consumption and carbon emissions, showing that graph-based propagation achieves competitive results at a fraction of the energy and environmental cost.
AI-generated text detectors have recently gained adoption in educational and professional contexts. Prior research has uncovered isolated cases of bias, particularly against English Language Learners (ELLs) however, there is a lack of systematic evaluation of such systems across broader sociolinguistic factors. In this work, we propose BAID, a comprehensive evaluation framework for AI detectors across various types of biases. As a part of the framework, we introduce over 200k samples spanning 7 major categories: demographics, age, educational grade level, dialect, formality, political leaning, and topic. We also generated synthetic versions of each sample with carefully crafted prompts to preserve the original content while reflecting subgroup-specific writing styles. Using this, we evaluate four open-source state-of-the-art AI text detectors and find consistent disparities in detection performance, particularly low recall rates for texts from underrepresented groups. Our contributions provide a scalable, transparent approach for auditing AI detectors and emphasize the need for bias-aware evaluation before these tools are deployed for public use.
Large language models are widely used across domains, yet there are concerns about their factual reliability and biases. Factual knowledge probing offers a systematic means to evaluate these aspects. Most existing benchmarks focus on single-entity facts and monolingual data. We therefore present FIBER, a multilingual benchmark for evaluating factual knowledge in single- and multi-entity settings. The dataset includes sentence completion, question-answering, and object-count prediction tasks in English, Italian, and Turkish. Using FIBER, we examine whether the prompt language induces inference bias in entity selection and how large language models perform on multi-entity versus single-entity questions. The results indicate that the language of the prompt can influence the model's generated output, particularly for entities associated with the country corresponding to that language. However, this effect varies across different topics such that 31% of the topics exhibit factual inference bias score greater than 0.5. Moreover, the level of bias differs across languages such that Turkish prompts show higher bias compared to Italian in 83% of the topics, suggesting a language-dependent pattern. Our findings also show that models face greater difficulty when handling multi-entity questions than the single-entity questions. Model performance differs across both languages and model sizes. The highest mean average precision is achieved in English, while Turkish and Italian lead to noticeably lower scores. Larger models, including Llama-3.1-8B and Qwen-2.5-7B, show consistently better performance than smaller 3B-4B models.
What is your messaging data used for? While many users do not often think about the information companies can gather based off of their messaging platform of choice, it is nonetheless important to consider as society increasingly relies on short-form electronic communication. While most companies keep their data closely guarded, inaccessible to users or potential hackers, Apple has opened a door to their walled-garden ecosystem, providing iMessage users on Mac with one file storing all their messages and attached metadata. With knowledge of this locally stored file, the question now becomes: What can our data do for us? In the creation of our iMessage text message analyzer, we set out to answer five main research questions focusing on topic modeling, response times, reluctance scoring, and sentiment analysis. This paper uses our exploratory data to show how these questions can be answered using our analyzer and its potential in future studies on iMessage data.
LabelFusion is a fusion ensemble for text classification that learns to combine a traditional transformer-based classifier (e.g., RoBERTa) with one or more Large Language Models (LLMs such as OpenAI GPT, Google Gemini, or DeepSeek) to deliver accurate and cost-aware predictions across multi-class and multi-label tasks. The package provides a simple high-level interface (AutoFusionClassifier) that trains the full pipeline end-to-end with minimal configuration, and a flexible API for advanced users. Under the hood, LabelFusion integrates vector signals from both sources by concatenating the ML backbone's embeddings with the LLM-derived per-class scores -- obtained through structured prompt-engineering strategies -- and feeds this joint representation into a compact multi-layer perceptron (FusionMLP) that produces the final prediction. This learned fusion approach captures complementary strengths of LLM reasoning and traditional transformer-based classifiers, yielding robust performance across domains -- achieving 92.4% accuracy on AG News and 92.3% on 10-class Reuters 21578 topic classification -- while enabling practical trade-offs between accuracy, latency, and cost.
Safety evaluations of large language models (LLMs) typically focus on universal risks like dangerous capabilities or undesirable propensities. However, millions use LLMs for personal advice on high-stakes topics like finance and health, where harms are context-dependent rather than universal. While frameworks like the OECD's AI classification recognize the need to assess individual risks, user-welfare safety evaluations remain underdeveloped. We argue that developing such evaluations is non-trivial due to fundamental questions about accounting for user context in evaluation design. In this exploratory study, we evaluated advice on finance and health from GPT-5, Claude Sonnet 4, and Gemini 2.5 Pro across user profiles of varying vulnerability. First, we demonstrate that evaluators must have access to rich user context: identical LLM responses were rated significantly safer by context-blind evaluators than by those aware of user circumstances, with safety scores for high-vulnerability users dropping from safe (5/7) to somewhat unsafe (3/7). One might assume this gap could be addressed by creating realistic user prompts containing key contextual information. However, our second study challenges this: we rerun the evaluation on prompts containing context users report they would disclose, finding no significant improvement. Our work establishes that effective user-welfare safety evaluation requires evaluators to assess responses against diverse user profiles, as realistic user context disclosure alone proves insufficient, particularly for vulnerable populations. By demonstrating a methodology for context-aware evaluation, this study provides both a starting point for such assessments and foundational evidence that evaluating individual welfare demands approaches distinct from existing universal-risk frameworks. We publish our code and dataset to aid future developments.




This paper presents the first large-scale field study of the adoption, usage intensity, and use cases of general-purpose AI agents operating in open-world web environments. Our analysis centers on Comet, an AI-powered browser developed by Perplexity, and its integrated agent, Comet Assistant. Drawing on hundreds of millions of anonymized user interactions, we address three fundamental questions: Who is using AI agents? How intensively are they using them? And what are they using them for? Our findings reveal substantial heterogeneity in adoption and usage across user segments. Earlier adopters, users in countries with higher GDP per capita and educational attainment, and individuals working in digital or knowledge-intensive sectors -- such as digital technology, academia, finance, marketing, and entrepreneurship -- are more likely to adopt or actively use the agent. To systematically characterize the substance of agent usage, we introduce a hierarchical agentic taxonomy that organizes use cases across three levels: topic, subtopic, and task. The two largest topics, Productivity & Workflow and Learning & Research, account for 57% of all agentic queries, while the two largest subtopics, Courses and Shopping for Goods, make up 22%. The top 10 out of 90 tasks represent 55% of queries. Personal use constitutes 55% of queries, while professional and educational contexts comprise 30% and 16%, respectively. In the short term, use cases exhibit strong stickiness, but over time users tend to shift toward more cognitively oriented topics. The diffusion of increasingly capable AI agents carries important implications for researchers, businesses, policymakers, and educators, inviting new lines of inquiry into this rapidly emerging class of AI capabilities.
Conspiratorial discourse is increasingly embedded within digital communication ecosystems, yet its structure and spread remain difficult to study. This work analyzes conspiratorial narratives in Singapore-based Telegram groups, showing that such content is woven into everyday discussions rather than confined to isolated echo chambers. We propose a two-stage computational framework. First, we fine-tune RoBERTa-large to classify messages as conspiratorial or not, achieving an F1-score of 0.866 on 2,000 expert-labeled messages. Second, we build a signed belief graph in which nodes represent messages and edge signs reflect alignment in belief labels, weighted by textual similarity. We introduce a Signed Belief Graph Neural Network (SiBeGNN) that uses a Sign Disentanglement Loss to learn embeddings that separate ideological alignment from stylistic features. Using hierarchical clustering on these embeddings, we identify seven narrative archetypes across 553,648 messages: legal topics, medical concerns, media discussions, finance, contradictions in authority, group moderation, and general chat. SiBeGNN yields stronger clustering quality (cDBI = 8.38) than baseline methods (13.60 to 67.27), supported by 88 percent inter-rater agreement in expert evaluations. Our analysis shows that conspiratorial messages appear not only in clusters focused on skepticism or distrust, but also within routine discussions of finance, law, and everyday matters. These findings challenge common assumptions about online radicalization by demonstrating that conspiratorial discourse operates within ordinary social interaction. The proposed framework advances computational methods for belief-driven discourse analysis and offers applications for stance detection, political communication studies, and content moderation policy.
Large language models (LLMs) are increasingly touted as powerful tools for automating scientific information extraction. However, existing methods and tools often struggle with the realities of scientific literature: long-context documents, multi-modal content, and reconciling varied and inconsistent fine-grained information across multiple publications into standardized formats. These challenges are further compounded when the desired data schema or extraction ontology changes rapidly, making it difficult to re-architect or fine-tune existing systems. We present SciEx, a modular and composable framework that decouples key components including PDF parsing, multi-modal retrieval, extraction, and aggregation. This design streamlines on-demand data extraction while enabling extensibility and flexible integration of new models, prompting strategies, and reasoning mechanisms. We evaluate SciEx on datasets spanning three scientific topics for its ability to extract fine-grained information accurately and consistently. Our findings provide practical insights into both the strengths and limitations of current LLM-based pipelines.
We introduce Stylized Meta-Album (SMA), a new image classification meta-dataset comprising 24 datasets (12 content datasets, and 12 stylized datasets), designed to advance studies on out-of-distribution (OOD) generalization and related topics. Created using style transfer techniques from 12 subject classification datasets, SMA provides a diverse and extensive set of 4800 groups, combining various subjects (objects, plants, animals, human actions, textures) with multiple styles. SMA enables flexible control over groups and classes, allowing us to configure datasets to reflect diverse benchmark scenarios. While ideally, data collection would capture extensive group diversity, practical constraints often make this infeasible. SMA addresses this by enabling large and configurable group structures through flexible control over styles, subject classes, and domains-allowing datasets to reflect a wide range of real-world benchmark scenarios. This design not only expands group and class diversity, but also opens new methodological directions for evaluating model performance across diverse group and domain configurations-including scenarios with many minority groups, varying group imbalance, and complex domain shifts-and for studying fairness, robustness, and adaptation under a broader range of realistic conditions. To demonstrate SMA's effectiveness, we implemented two benchmarks: (1) a novel OOD generalization and group fairness benchmark leveraging SMA's domain, class, and group diversity to evaluate existing benchmarks. Our findings reveal that while simple balancing and algorithms utilizing group information remain competitive as claimed in previous benchmarks, increasing group diversity significantly impacts fairness, altering the superiority and relative rankings of algorithms. We also propose to use \textit{Top-M worst group accuracy} as a new hyperparameter tuning metric, demonstrating broader fairness during optimization and delivering better final worst-group accuracy for larger group diversity. (2) An unsupervised domain adaptation (UDA) benchmark utilizing SMA's group diversity to evaluate UDA algorithms across more scenarios, offering a more comprehensive benchmark with lower error bars (reduced by 73\% and 28\% in closed-set setting and UniDA setting, respectively) compared to existing efforts. These use cases highlight SMA's potential to significantly impact the outcomes of conventional benchmarks.