Abstract:We introduced PerCoR (Persian Commonsense Reasoning), the first large-scale Persian benchmark for commonsense reasoning. PerCoR contains 106K multiple-choice sentence-completion problems drawn from more than forty news, cultural, and other web sources. We introduce a novel conjunction-based segmentation strategy to generate coherent sentence-completion pairs, enabling broad topical and structural diversity. To create challenging distractors, we propose DRESS-AF (Distractor Ranking via Embedding Similarity Scoring and Adversarial Filtering), a generation-free adversarial filtering method that selects distractors from the pool of gold continuations while maximising model confusion. Human annotators score 89% on PerCoR, while OpenAI-o3 achieves the highest performance at 92.18%, followed closely by Claude-Sonnet-3.7 (91.17%). The strongest open-source model, DeepSeek-R1, reaches 82.51%, underscoring both the dataset's difficulty and the remaining performance gap in Persian commonsense reasoning. We further show that DRESS-AF transfers to the English HellaSwag benchmark, increasing its difficulty without hurting human solvability. The dataset is available at https://huggingface.co/datasets/MCINext/PerCoR.
Abstract:Recent advancements in text embedding have significantly improved natural language understanding across many languages, yet Persian remains notably underrepresented in large-scale embedding research. In this paper, we present Hakim, a novel state-of-the-art Persian text embedding model that achieves a 8.5% performance improvement over existing approaches on the FaMTEB benchmark, outperforming all previously developed Persian language models. As part of this work, we introduce three new datasets - Corpesia, Pairsia-sup, and Pairsia-unsup - to support supervised and unsupervised training scenarios. Additionally, Hakim is designed for applications in chatbots and retrieval-augmented generation (RAG) systems, particularly addressing retrieval tasks that require incorporating message history within these systems. We also propose a new baseline model built on the BERT architecture. Our language model consistently achieves higher accuracy across various Persian NLP tasks, while the RetroMAE-based model proves particularly effective for textual information retrieval applications. Together, these contributions establish a new foundation for advancing Persian language understanding.
Abstract:In this paper, we introduce a comprehensive benchmark for Persian (Farsi) text embeddings, built upon the Massive Text Embedding Benchmark (MTEB). Our benchmark includes 63 datasets spanning seven different tasks: classification, clustering, pair classification, reranking, retrieval, summary retrieval, and semantic textual similarity. The datasets are formed as a combination of existing, translated, and newly generated data, offering a diverse evaluation framework for Persian language models. Given the increasing use of text embedding models in chatbots, evaluation datasets are becoming inseparable ingredients in chatbot challenges and Retrieval-Augmented Generation systems. As a contribution, we include chatbot evaluation datasets in the MTEB benchmark for the first time. In addition, in this paper, we introduce the new task of summary retrieval which is not part of the tasks included in standard MTEB. Another contribution of this paper is the introduction of a substantial number of new Persian language NLP datasets suitable for training and evaluation, some of which have no previous counterparts in Persian. We evaluate the performance of several Persian and multilingual embedding models in a range of tasks. This work introduces an open-source benchmark with datasets, code and a public leaderboard.