How to make human-interpreter-like read/write decisions for simultaneous speech translation (SimulST) systems? Current state-of-the-art systems formulate SimulST as a multi-turn dialogue task, requiring specialized interleaved training data and relying on computationally expensive large language model (LLM) inference for decision-making. In this paper, we propose SimulSense, a novel framework for SimulST that mimics human interpreters by continuously reading input speech and triggering write decisions to produce translation when a new sense unit is perceived. Experiments against two state-of-the-art baseline systems demonstrate that our proposed method achieves a superior quality-latency tradeoff and substantially improved real-time efficiency, where its decision-making is up to 9.6x faster than the baselines.
Low latency speech human-machine communication is becoming increasingly necessary as speech technology advances quickly in the last decade. One of the primary factors behind the advancement of speech technology is self-supervised learning. Most self-supervised learning algorithms are designed with full utterance assumption and compromises have to made if partial utterances are presented, which are common in the streaming applications. In this work, we propose a chunk based self-supervised learning (Chunk SSL) algorithm as an unified solution for both streaming and offline speech pre-training. Chunk SSL is optimized with the masked prediction loss and an acoustic encoder is encouraged to restore indices of those masked speech frames with help from unmasked frames in the same chunk and preceding chunks. A copy and append data augmentation approach is proposed to conduct efficient chunk based pre-training. Chunk SSL utilizes a finite scalar quantization (FSQ) module to discretize input speech features and our study shows a high resolution FSQ codebook, i.e., a codebook with vocabulary size up to a few millions, is beneficial to transfer knowledge from the pre-training task to the downstream tasks. A group masked prediction loss is employed during pre-training to alleviate the high memory and computation cost introduced by the large codebook. The proposed approach is examined in two speech to text tasks, i.e., speech recognition and speech translation. Experimental results on the \textsc{Librispeech} and \textsc{Must-C} datasets show that the proposed method could achieve very competitive results for speech to text tasks at both streaming and offline modes.
Spoken Language Assessment (SLA) estimates a learner's oral proficiency from spontaneous speech. The growing population of L2 English speakers has intensified the demand for reliable SLA, a critical component of Computer Assisted Language Learning (CALL). Existing efforts often rely on cascaded pipelines, which are prone to error propagation, or end-to-end models that often operate on a short audio window, which might miss discourse-level evidence. This paper introduces a novel multimodal foundation model approach that performs session-level evaluation in a single pass. Our approach couples multi-target learning with a frozen, Whisper ASR model-based speech prior for acoustic-aware calibration, allowing for jointly learning holistic and trait-level objectives of SLA without resorting to handcrafted features. By coherently processing the entire response session of an L2 speaker, the model excels at predicting holistic oral proficiency. Experiments conducted on the Speak & Improve benchmark demonstrate that our proposed approach outperforms the previous state-of-the-art cascaded system and exhibits robust cross-part generalization, producing a compact deployable grader that is tailored for CALL applications.
Audio-Visual Speech Recognition (AVSR) models have surpassed their audio-only counterparts in terms of performance. However, the interpretability of AVSR systems, particularly the role of the visual modality, remains under-explored. In this paper, we apply several interpretability techniques to examine how visemes are encoded in AV-HuBERT a state-of-the-art AVSR model. First, we use t-distributed Stochastic Neighbour Embedding (t-SNE) to visualize learned features, revealing natural clustering driven by visual cues, which is further refined by the presence of audio. Then, we employ probing to show how audio contributes to refining feature representations, particularly for visemes that are visually ambiguous or under-represented. Our findings shed light on the interplay between modalities in AVSR and could point to new strategies for leveraging visual information to improve AVSR performance.
Diffusion and flow matching (FM) models have achieved remarkable progress in speech enhancement (SE), yet their dependence on multi-step generation is computationally expensive and vulnerable to discretization errors. Recent advances in one-step generative modeling, particularly MeanFlow, provide a promising alternative by reformulating dynamics through average velocity fields. In this work, we present COSE, a one-step FM framework tailored for SE. To address the high training overhead of Jacobian-vector product (JVP) computations in MeanFlow, we introduce a velocity composition identity to compute average velocity efficiently, eliminating expensive computation while preserving theoretical consistency and achieving competitive enhancement quality. Extensive experiments on standard benchmarks show that COSE delivers up to 5x faster sampling and reduces training cost by 40%, all without compromising speech quality. Code is available at https://github.com/ICDM-UESTC/COSE.
In speech enhancement, knowledge distillation (KD) compresses models by transferring a high-capacity teacher's knowledge to a compact student. However, conventional KD methods train the student to mimic the teacher's output entirely, which forces the student to imitate the regions where the teacher performs poorly and to apply distillation to the regions where the student already performs well, which yields only marginal gains. We propose Distilling Selective Patches (DISPatch), a KD framework for speech enhancement that applies the distillation loss to spectrogram patches where the teacher outperforms the student, as determined by a Knowledge Gap Score. This approach guides optimization toward areas with the most significant potential for student improvement while minimizing the influence of regions where the teacher may provide unreliable instruction. Furthermore, we introduce Multi-Scale Selective Patches (MSSP), a frequency-dependent method that uses different patch sizes across low- and high-frequency bands to account for spectral heterogeneity. We incorporate DISPatch into conventional KD methods and observe consistent gains in compact students. Moreover, integrating DISPatch and MSSP into a state-of-the-art frequency-dependent KD method considerably improves performance across all metrics.
Transformer-based speech language models (SLMs) have significantly improved neural speech recognition and understanding. While existing research has examined how well SLMs encode shallow acoustic and phonetic features, the extent to which SLMs encode nuanced syntactic and conceptual features remains unclear. By drawing parallels with linguistic competence assessments for large language models, this study is the first to systematically evaluate the presence of contextual syntactic and semantic features across SLMs for self-supervised learning (S3M), automatic speech recognition (ASR), speech compression (codec), and as the encoder for auditory large language models (AudioLLMs). Through minimal pair designs and diagnostic feature analysis across 71 tasks spanning diverse linguistic levels, our layer-wise and time-resolved analysis uncovers that 1) all speech encode grammatical features more robustly than conceptual ones.
Target Speaker Automatic Speech Recognition (TS-ASR) aims to transcribe the speech of a specified target speaker from multi-speaker mixtures in cocktail party scenarios. Recent advancement of Large Audio-Language Models (LALMs) has already brought some new insights to TS-ASR. However, significant room for optimization remains for the TS-ASR task within the LALMs architecture. While Chain of Thoughts (CoT) and Reinforcement Learning (RL) have proven effective in certain speech tasks, TS-ASR, which requires the model to deeply comprehend speech signals, differentiate various speakers, and handle overlapping utterances is particularly well-suited to a reasoning-guided approach. Therefore, we propose a novel framework that incorporates CoT and RL training into TS-ASR for performance improvement. A novel CoT dataset of TS-ASR is constructed, and the TS-ASR model is first trained on regular data and then fine-tuned on CoT data. Finally, the model is further trained with RL using selected data to enhance generalized reasoning capabilities. Experiment results demonstrate a significant improvement of TS-ASR performance with CoT and RL training, establishing a state-of-the-art performance compared with previous works of TS-ASR on comparable datasets.




The pipeline for multi-participant audiobook production primarily consists of three stages: script analysis, character voice timbre selection, and speech synthesis. Among these, script analysis can be automated with high accuracy using NLP models, whereas character voice timbre selection still relies on manual effort. Speech synthesis uses either manual dubbing or text-to-speech (TTS). While TTS boosts efficiency, it struggles with emotional expression, intonation control, and contextual scene adaptation. To address these challenges, we propose DeepDubbing, an end-to-end automated system for multi-participant audiobook production. The system comprises two main components: a Text-to-Timbre (TTT) model and a Context-Aware Instruct-TTS (CA-Instruct-TTS) model. The TTT model generates role-specific timbre embeddings conditioned on text descriptions. The CA-Instruct-TTS model synthesizes expressive speech by analyzing contextual dialogue and incorporating fine-grained emotional instructions. This system enables the automated generation of multi-participant audiobooks with both timbre-matched character voices and emotionally expressive narration, offering a novel solution for audiobook production.
How does visual information included in training affect language processing in audio- and text-based deep learning models? We explore how such visual grounding affects model-internal representations of words, and find substantially different effects in speech- vs. text-based language encoders. Firstly, global representational comparisons reveal that visual grounding increases alignment between representations of spoken and written language, but this effect seems mainly driven by enhanced encoding of word identity rather than meaning. We then apply targeted clustering analyses to probe for phonetic vs. semantic discriminability in model representations. Speech-based representations remain phonetically dominated with visual grounding, but in contrast to text-based representations, visual grounding does not improve semantic discriminability. Our findings could usefully inform the development of more efficient methods to enrich speech-based models with visually-informed semantics.